forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bop_base.h
288 lines (239 loc) · 10.7 KB
/
bop_base.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OR_TOOLS_BOP_BOP_BASE_H_
#define OR_TOOLS_BOP_BOP_BASE_H_
#include <cstdint>
#include <limits>
#include <ostream>
#include <string>
#include <vector>
#include "absl/synchronization/mutex.h"
#include "ortools/base/basictypes.h"
#include "ortools/base/strong_vector.h"
#include "ortools/bop/bop_parameters.pb.h"
#include "ortools/bop/bop_solution.h"
#include "ortools/lp_data/lp_types.h"
#include "ortools/sat/boolean_problem.pb.h"
#include "ortools/sat/clause.h"
#include "ortools/sat/sat_base.h"
#include "ortools/util/stats.h"
#include "ortools/util/time_limit.h"
namespace operations_research {
namespace bop {
// Forward declaration.
struct LearnedInfo;
class ProblemState;
// Base class used to optimize a ProblemState.
// Optimizers implementing this class are used in a sort of portfolio and
// are run sequentially or concurrently. See for instance BopRandomLNSOptimizer.
class BopOptimizerBase {
public:
explicit BopOptimizerBase(const std::string& name);
virtual ~BopOptimizerBase();
// Returns the name given at construction.
const std::string& name() const { return name_; }
// Returns true if this optimizer should be run on the given problem state.
// Some optimizer requires a feasible solution to run for instance.
//
// Note that a similar effect can be achieved if Optimize() returns ABORT
// right away. However, doing the later will lower the chance of this
// optimizer to be called again since it will count as a failure to improve
// the current state.
virtual bool ShouldBeRun(const ProblemState& problem_state) const = 0;
// Return status of the Optimize() function below.
//
// TODO(user): To redesign, some are not needed anymore thanks to the
// problem state, e.g. IsOptimal().
enum Status {
OPTIMAL_SOLUTION_FOUND,
SOLUTION_FOUND,
INFEASIBLE,
LIMIT_REACHED,
// Some information was learned and the problem state will need to be
// updated. This will trigger a new optimization round.
//
// TODO(user): replace by learned_info->IsEmpty()? but we will need to clear
// the BopSolution there first.
INFORMATION_FOUND,
// This optimizer didn't learn any information yet but can be called again
// on the same problem state to resume its work.
CONTINUE,
// There is no need to call this optimizer again on the same problem state.
ABORT
};
// Tries to infer more information about the problem state, i.e. reduces the
// gap by increasing the lower bound or finding a better solution.
// Returns SOLUTION_FOUND when a new solution with a better objective cost is
// found before a time limit.
// The learned information is cleared and the filled with any new information
// about the problem, e.g. a new lower bound.
//
// Preconditions: ShouldBeRun() must returns true.
virtual Status Optimize(const BopParameters& parameters,
const ProblemState& problem_state,
LearnedInfo* learned_info, TimeLimit* time_limit) = 0;
// Returns a string describing the status.
static std::string GetStatusString(Status status);
protected:
const std::string name_;
mutable StatsGroup stats_;
};
inline std::ostream& operator<<(std::ostream& os,
BopOptimizerBase::Status status) {
os << BopOptimizerBase::GetStatusString(status);
return os;
}
// This class represents the current state of the problem with all the
// information that the solver learned about it at a given time.
class ProblemState {
public:
explicit ProblemState(const sat::LinearBooleanProblem& problem);
// Sets parameters, used for instance to get the tolerance, the gap limit...
void SetParameters(const BopParameters& parameters) {
parameters_ = parameters;
}
const BopParameters& GetParameters() const { return parameters_; }
// Sets an assignment preference for each variable.
// This is only used for warm start.
void set_assignment_preference(const std::vector<bool>& a) {
assignment_preference_ = a;
}
const std::vector<bool> assignment_preference() const {
return assignment_preference_;
}
// Merges the learned information with the current problem state. For
// instance, if variables x, and y are fixed in the current state, and z is
// learned to be fixed, the result of the merge will be x, y, and z being
// fixed in the problem state.
// Note that the LP values contained in the learned information (if any)
// will replace the LP values of the problem state, whatever the cost is.
// Returns true when the merge has changed the problem state.
bool MergeLearnedInfo(const LearnedInfo& learned_info,
BopOptimizerBase::Status optimization_status);
// Returns all the information learned so far.
// TODO(user): In the current implementation the learned information only
// contains binary clauses added since the last call to
// SynchronizationDone().
// Add an iterator on the sat::BinaryClauseManager.
LearnedInfo GetLearnedInfo() const;
// The stamp represents an upper bound on the number of times the problem
// state has been updated. If the stamp changed since last time one has
// checked the state, it's worth trying again as it might have changed
// (no guarantee).
static const int64_t kInitialStampValue;
int64_t update_stamp() const { return update_stamp_; }
// Marks the problem state as optimal.
void MarkAsOptimal();
// Marks the problem state as infeasible.
void MarkAsInfeasible();
// Returns true when the current state is proved to be optimal. In such a case
// solution() returns the optimal solution.
bool IsOptimal() const {
return solution_.IsFeasible() && solution_.GetCost() == lower_bound();
}
// Returns true when the problem is proved to be infeasible.
bool IsInfeasible() const { return lower_bound() > upper_bound(); }
// Returns true when the variable var is fixed in the current problem state.
// The value of the fixed variable is returned by GetVariableFixedValue(var).
bool IsVariableFixed(VariableIndex var) const { return is_fixed_[var]; }
const absl::StrongVector<VariableIndex, bool>& is_fixed() const {
return is_fixed_;
}
// Returns the value of the fixed variable var. Should be only called on fixed
// variables (CHECKed).
bool GetVariableFixedValue(VariableIndex var) const {
return fixed_values_[var];
}
const absl::StrongVector<VariableIndex, bool>& fixed_values() const {
return fixed_values_;
}
// Returns the values of the LP relaxation of the problem. Returns an empty
// vector when the LP has not been populated.
const glop::DenseRow& lp_values() const { return lp_values_; }
// Returns the solution to the current state problem.
// Note that the solution might not be feasible because until we find one, it
// will just be the all-false assignment.
const BopSolution& solution() const { return solution_; }
// Returns the original problem. Note that the current problem might be
// different, e.g. fixed variables, but equivalent, i.e. a solution to one
// should be a solution to the other too.
const sat::LinearBooleanProblem& original_problem() const {
return original_problem_;
}
// Returns the current lower (resp. upper) bound of the objective cost.
// For internal use only: this is the unscaled version of the lower (resp.
// upper) bound, and so should be compared only to the unscaled cost given by
// solution.GetCost().
int64_t lower_bound() const { return lower_bound_; }
int64_t upper_bound() const { return upper_bound_; }
// Returns the scaled lower bound of the original problem.
double GetScaledLowerBound() const {
return (lower_bound() + original_problem_.objective().offset()) *
original_problem_.objective().scaling_factor();
}
// Returns the newly added binary clause since the last SynchronizationDone().
const std::vector<sat::BinaryClause>& NewlyAddedBinaryClauses() const;
// Resets what is considered "new" information. This is meant to be called
// once all the optimize have been synchronized.
void SynchronizationDone();
private:
const sat::LinearBooleanProblem& original_problem_;
BopParameters parameters_;
int64_t update_stamp_;
absl::StrongVector<VariableIndex, bool> is_fixed_;
absl::StrongVector<VariableIndex, bool> fixed_values_;
glop::DenseRow lp_values_;
BopSolution solution_;
std::vector<bool> assignment_preference_;
int64_t lower_bound_;
int64_t upper_bound_;
// Manage the set of the problem binary clauses (including the learned ones).
sat::BinaryClauseManager binary_clause_manager_;
DISALLOW_COPY_AND_ASSIGN(ProblemState);
};
// This struct represents what has been learned on the problem state by
// running an optimizer. The goal is then to merge the learned information
// with the problem state in order to get a more constrained problem to be used
// by the next called optimizer.
struct LearnedInfo {
explicit LearnedInfo(const sat::LinearBooleanProblem& problem)
: fixed_literals(),
solution(problem, "AllZero"),
lower_bound(std::numeric_limits<int64_t>::min()),
lp_values(),
binary_clauses() {}
// Clears all just as if the object were a brand new one. This can be used
// to reduce the number of creation / deletion of objects.
void Clear() {
fixed_literals.clear();
lower_bound = std::numeric_limits<int64_t>::min();
lp_values.clear();
binary_clauses.clear();
}
// Vector of all literals that have been fixed.
std::vector<sat::Literal> fixed_literals;
// New solution. Note that the solution might be infeasible.
BopSolution solution;
// A lower bound (for multi-threading purpose).
int64_t lower_bound;
// An assignment for the relaxed linear programming problem (can be empty).
// This is meant to be the optimal LP solution, but can just be a feasible
// solution or any floating point assignment if the LP solver didn't solve
// the relaxed problem optimally.
glop::DenseRow lp_values;
// New binary clauses.
std::vector<sat::BinaryClause> binary_clauses;
};
} // namespace bop
} // namespace operations_research
#endif // OR_TOOLS_BOP_BOP_BASE_H_