forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bop_solution.cc
86 lines (77 loc) · 2.96 KB
/
bop_solution.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/bop/bop_solution.h"
#include <cstdint>
#include <string>
namespace operations_research {
namespace bop {
using ::operations_research::sat::LinearBooleanConstraint;
using ::operations_research::sat::LinearBooleanProblem;
using ::operations_research::sat::LinearObjective;
//------------------------------------------------------------------------------
// BopSolution
//------------------------------------------------------------------------------
BopSolution::BopSolution(const LinearBooleanProblem& problem,
const std::string& name)
: problem_(&problem),
name_(name),
values_(problem.num_variables(), false),
recompute_cost_(true),
recompute_is_feasible_(true),
cost_(0),
is_feasible_(false) {
// Try the lucky assignment, i.e. the optimal one if feasible.
const LinearObjective& objective = problem.objective();
for (int i = 0; i < objective.coefficients_size(); ++i) {
const VariableIndex var(objective.literals(i) - 1);
values_[var] = objective.coefficients(i) < 0;
}
}
int64_t BopSolution::ComputeCost() const {
recompute_cost_ = false;
int64_t sum = 0;
const LinearObjective& objective = problem_->objective();
const size_t num_sparse_vars = objective.literals_size();
CHECK_EQ(num_sparse_vars, objective.coefficients_size());
for (int i = 0; i < num_sparse_vars; ++i) {
CHECK_GT(objective.literals(i), 0);
const VariableIndex var(abs(objective.literals(i)) - 1);
if (values_[var]) {
sum += objective.coefficients(i);
}
}
return sum;
}
bool BopSolution::ComputeIsFeasible() const {
recompute_is_feasible_ = false;
for (const LinearBooleanConstraint& constraint : problem_->constraints()) {
int64_t sum = 0;
const size_t num_sparse_vars = constraint.literals_size();
CHECK_EQ(num_sparse_vars, constraint.coefficients_size());
for (int i = 0; i < num_sparse_vars; ++i) {
// The solver doesn't support negative literals yet.
CHECK_GT(constraint.literals(i), 0);
const VariableIndex var(abs(constraint.literals(i)) - 1);
if (values_[var]) {
sum += constraint.coefficients(i);
}
}
if ((constraint.has_upper_bound() && sum > constraint.upper_bound()) ||
(constraint.has_lower_bound() && sum < constraint.lower_bound())) {
return false;
}
}
return true;
}
} // namespace bop
} // namespace operations_research