forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bop_util.cc
202 lines (173 loc) · 7 KB
/
bop_util.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/bop/bop_util.h"
#include <algorithm>
#include <limits>
#include <vector>
#include "ortools/base/basictypes.h"
#include "ortools/base/integral_types.h"
#include "ortools/bop/bop_base.h"
#include "ortools/bop/bop_solution.h"
#include "ortools/sat/boolean_problem.h"
#include "ortools/sat/sat_solver.h"
namespace operations_research {
namespace bop {
namespace {
static const int kMaxLubyIndex = 30;
static const int kMaxBoost = 30;
// Loads the problem state into the SAT solver. If the problem has already been
// loaded in the sat_solver, fixed variables and objective bounds are updated.
// Returns false when the problem is proved UNSAT.
bool InternalLoadStateProblemToSatSolver(const ProblemState& problem_state,
sat::SatSolver* sat_solver) {
const bool first_time = (sat_solver->NumVariables() == 0);
if (first_time) {
sat_solver->SetNumVariables(
problem_state.original_problem().num_variables());
} else {
// Backtrack the solver to be able to add new constraints.
sat_solver->Backtrack(0);
}
// Set the fixed variables first so that loading the problem will be faster.
for (VariableIndex var(0); var < problem_state.is_fixed().size(); ++var) {
if (problem_state.is_fixed()[var]) {
if (!sat_solver->AddUnitClause(
sat::Literal(sat::BooleanVariable(var.value()),
problem_state.fixed_values()[var]))) {
return false;
}
}
}
// Load the problem if not done yet.
if (first_time &&
!LoadBooleanProblem(problem_state.original_problem(), sat_solver)) {
return false;
}
// Constrain the objective cost to be greater or equal to the lower bound,
// and to be smaller than the upper bound. If enforcing the strictier upper
// bound constraint leads to an UNSAT problem, it means the current solution
// is proved optimal (if the solution is feasible, else the problem is proved
// infeasible).
if (!AddObjectiveConstraint(
problem_state.original_problem(),
problem_state.lower_bound() != std::numeric_limits<int64_t>::min(),
sat::Coefficient(problem_state.lower_bound()),
problem_state.upper_bound() != std::numeric_limits<int64_t>::max(),
sat::Coefficient(problem_state.upper_bound() - 1), sat_solver)) {
return false;
}
// Adds the new binary clauses.
sat_solver->TrackBinaryClauses(true);
if (!sat_solver->AddBinaryClauses(problem_state.NewlyAddedBinaryClauses())) {
return false;
}
sat_solver->ClearNewlyAddedBinaryClauses();
return true;
}
} // anonymous namespace
BopOptimizerBase::Status LoadStateProblemToSatSolver(
const ProblemState& problem_state, sat::SatSolver* sat_solver) {
if (InternalLoadStateProblemToSatSolver(problem_state, sat_solver)) {
return BopOptimizerBase::CONTINUE;
}
return problem_state.solution().IsFeasible()
? BopOptimizerBase::OPTIMAL_SOLUTION_FOUND
: BopOptimizerBase::INFEASIBLE;
}
void ExtractLearnedInfoFromSatSolver(sat::SatSolver* solver,
LearnedInfo* info) {
CHECK(nullptr != solver);
CHECK(nullptr != info);
// This should never be called if the problem is UNSAT.
CHECK(!solver->IsModelUnsat());
// Fixed variables.
info->fixed_literals.clear();
const sat::Trail& propagation_trail = solver->LiteralTrail();
const int root_size = solver->CurrentDecisionLevel() == 0
? propagation_trail.Index()
: solver->Decisions().front().trail_index;
for (int trail_index = 0; trail_index < root_size; ++trail_index) {
info->fixed_literals.push_back(propagation_trail[trail_index]);
}
// Binary clauses.
info->binary_clauses = solver->NewlyAddedBinaryClauses();
solver->ClearNewlyAddedBinaryClauses();
}
void SatAssignmentToBopSolution(const sat::VariablesAssignment& assignment,
BopSolution* solution) {
CHECK(solution != nullptr);
// Only extract the variables of the initial problem.
CHECK_LE(solution->Size(), assignment.NumberOfVariables());
for (sat::BooleanVariable var(0); var < solution->Size(); ++var) {
CHECK(assignment.VariableIsAssigned(var));
const bool value = assignment.LiteralIsTrue(sat::Literal(var, true));
const VariableIndex bop_var_id(var.value());
solution->SetValue(bop_var_id, value);
}
}
//------------------------------------------------------------------------------
// AdaptiveParameterValue
//------------------------------------------------------------------------------
AdaptiveParameterValue::AdaptiveParameterValue(double initial_value)
: value_(initial_value), num_changes_(0) {}
void AdaptiveParameterValue::Reset() { num_changes_ = 0; }
void AdaptiveParameterValue::Increase() {
++num_changes_;
const double factor = 1.0 + 1.0 / (num_changes_ / 2.0 + 1);
value_ = std::min(1.0 - (1.0 - value_) / factor, value_ * factor);
}
void AdaptiveParameterValue::Decrease() {
++num_changes_;
const double factor = 1.0 + 1.0 / (num_changes_ / 2.0 + 1);
value_ = std::max(value_ / factor, 1.0 - (1.0 - value_) * factor);
}
//------------------------------------------------------------------------------
// LubyAdaptiveParameterValue
//------------------------------------------------------------------------------
LubyAdaptiveParameterValue::LubyAdaptiveParameterValue(double initial_value)
: luby_id_(0),
luby_boost_(0),
luby_value_(0),
difficulties_(kMaxLubyIndex, AdaptiveParameterValue(initial_value)) {
Reset();
}
void LubyAdaptiveParameterValue::Reset() {
luby_id_ = 0;
luby_boost_ = 0;
luby_value_ = 0;
for (int i = 0; i < difficulties_.size(); ++i) {
difficulties_[i].Reset();
}
}
void LubyAdaptiveParameterValue::IncreaseParameter() {
const int luby_msb = MostSignificantBitPosition64(luby_value_);
difficulties_[luby_msb].Increase();
}
void LubyAdaptiveParameterValue::DecreaseParameter() {
const int luby_msb = MostSignificantBitPosition64(luby_value_);
difficulties_[luby_msb].Decrease();
}
double LubyAdaptiveParameterValue::GetParameterValue() const {
const int luby_msb = MostSignificantBitPosition64(luby_value_);
return difficulties_[luby_msb].value();
}
bool LubyAdaptiveParameterValue::BoostLuby() {
++luby_boost_;
return luby_boost_ >= kMaxBoost;
}
void LubyAdaptiveParameterValue::UpdateLuby() {
++luby_id_;
luby_value_ = sat::SUniv(luby_id_) << luby_boost_;
}
} // namespace bop
} // namespace operations_research