forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
entering_variable.cc
361 lines (315 loc) · 15.3 KB
/
entering_variable.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/glop/entering_variable.h"
#include <algorithm>
#include <limits>
#include <queue>
#include <vector>
#include "ortools/base/timer.h"
#include "ortools/lp_data/lp_utils.h"
#include "ortools/port/proto_utils.h"
namespace operations_research {
namespace glop {
EnteringVariable::EnteringVariable(const VariablesInfo& variables_info,
absl::BitGenRef random,
ReducedCosts* reduced_costs)
: variables_info_(variables_info),
random_(random),
reduced_costs_(reduced_costs),
parameters_() {}
Status EnteringVariable::DualChooseEnteringColumn(
bool nothing_to_recompute, const UpdateRow& update_row,
Fractional cost_variation, std::vector<ColIndex>* bound_flip_candidates,
ColIndex* entering_col) {
GLOP_RETURN_ERROR_IF_NULL(entering_col);
const auto update_coefficients = update_row.GetCoefficients().const_view();
const auto reduced_costs = reduced_costs_->GetReducedCosts().const_view();
SCOPED_TIME_STAT(&stats_);
breakpoints_.clear();
breakpoints_.reserve(update_row.GetNonZeroPositions().size());
const DenseBitRow& can_decrease = variables_info_.GetCanDecreaseBitRow();
const DenseBitRow& can_increase = variables_info_.GetCanIncreaseBitRow();
const DenseBitRow& is_boxed = variables_info_.GetNonBasicBoxedVariables();
// If everything has the best possible precision currently, we ignore
// low coefficients. This make sure we will never choose a pivot too small. It
// however can degrade the dual feasibility of the solution, but we can always
// fix that later.
//
// TODO(user): It is unclear if this is a good idea, but the primal simplex
// have pretty good/stable behavior with a similar logic. Experiment seems
// to show that this works well with the dual too.
const Fractional threshold = nothing_to_recompute
? parameters_.minimum_acceptable_pivot()
: parameters_.ratio_test_zero_threshold();
Fractional variation_magnitude = std::abs(cost_variation) - threshold;
// Harris ratio test. See below for more explanation. Here this is used to
// prune the first pass by not enqueueing ColWithRatio for columns that have
// a ratio greater than the current harris_ratio.
const Fractional harris_tolerance =
parameters_.harris_tolerance_ratio() *
reduced_costs_->GetDualFeasibilityTolerance();
Fractional harris_ratio = std::numeric_limits<Fractional>::max();
// Like for the primal, we always allow a positive ministep, even if a
// variable is already infeasible by more than the tolerance.
const Fractional minimum_delta =
parameters_.degenerate_ministep_factor() *
reduced_costs_->GetDualFeasibilityTolerance();
num_operations_ += 10 * update_row.GetNonZeroPositions().size();
for (const ColIndex col : update_row.GetNonZeroPositions()) {
// We will add ratio * coeff to this column with a ratio positive or zero.
// cost_variation makes sure the leaving variable will be dual-feasible
// (its update coeff is sign(cost_variation) * 1.0).
const Fractional coeff = (cost_variation > 0.0) ? update_coefficients[col]
: -update_coefficients[col];
ColWithRatio entry;
if (can_decrease.IsSet(col) && coeff > threshold) {
// In this case, at some point the reduced cost will be positive if not
// already, and the column will be dual-infeasible.
if (-reduced_costs[col] > harris_ratio * coeff) continue;
entry = ColWithRatio(col, -reduced_costs[col], coeff);
} else if (can_increase.IsSet(col) && coeff < -threshold) {
// In this case, at some point the reduced cost will be negative if not
// already, and the column will be dual-infeasible.
if (reduced_costs[col] > harris_ratio * -coeff) continue;
entry = ColWithRatio(col, reduced_costs[col], -coeff);
} else {
continue;
}
const Fractional hr =
std::max(minimum_delta / entry.coeff_magnitude,
entry.ratio + harris_tolerance / entry.coeff_magnitude);
if (hr < harris_ratio) {
if (is_boxed[col]) {
const Fractional delta =
variables_info_.GetBoundDifference(col) * entry.coeff_magnitude;
if (delta >= variation_magnitude) {
harris_ratio = hr;
}
} else {
harris_ratio = hr;
}
}
breakpoints_.push_back(entry);
}
// Process the breakpoints in priority order as suggested by Maros in
// I. Maros, "A generalized dual phase-2 simplex algorithm", European Journal
// of Operational Research, 149(1):1-16, 2003.
// We use directly make_heap() to avoid a copy of breakpoints, benchmark shows
// that it is slightly faster.
std::make_heap(breakpoints_.begin(), breakpoints_.end());
// Harris ratio test. Since we process the breakpoints by increasing ratio, we
// do not need a two-pass algorithm as described in the literature. Each time
// we process a new breakpoint, we update the harris_ratio of all the
// processed breakpoints. For the first new breakpoint with a ratio greater
// than the current harris_ratio we know that:
// - All the unprocessed breakpoints will have a ratio greater too, so they
// will not contribute to the minimum Harris ratio.
// - We thus have the actual harris_ratio.
// - We have processed all breakpoints with a ratio smaller than it.
harris_ratio = std::numeric_limits<Fractional>::max();
*entering_col = kInvalidCol;
bound_flip_candidates->clear();
Fractional step = 0.0;
Fractional best_coeff = -1.0;
equivalent_entering_choices_.clear();
while (!breakpoints_.empty()) {
const ColWithRatio top = breakpoints_.front();
if (top.ratio > harris_ratio) break;
// If the column is boxed, we can just switch its bounds and
// ignore the breakpoint! But we need to see if the entering row still
// improve the objective. This is called the bound flipping ratio test in
// the literature. See for instance:
// http://www.mpi-inf.mpg.de/conferences/adfocs-03/Slides/Bixby_2.pdf
//
// For each bound flip, |cost_variation| decreases by
// |upper_bound - lower_bound| times |coeff|.
//
// Note that the actual flipping will be done afterwards by
// MakeBoxedVariableDualFeasible() in revised_simplex.cc.
if (variation_magnitude > 0.0) {
if (is_boxed[top.col]) {
variation_magnitude -=
variables_info_.GetBoundDifference(top.col) * top.coeff_magnitude;
if (variation_magnitude > 0.0) {
bound_flip_candidates->push_back(top.col);
std::pop_heap(breakpoints_.begin(), breakpoints_.end());
breakpoints_.pop_back();
continue;
}
}
}
// TODO(user): We want to maximize both the ratio (objective improvement)
// and the coeff_magnitude (stable pivot), so we have to make some
// trade-offs. Investigate alternative strategies.
if (top.coeff_magnitude >= best_coeff) {
// Update harris_ratio. Note that because we process ratio in order, the
// harris ratio can only get smaller if the coeff_magnitude is bigger
// than the one of the best coefficient.
//
// If the dual infeasibility is too high, the harris_ratio can be
// negative. To avoid this we always allow for a minimum step even if
// we push some already infeasible variable further away. This is quite
// important because its helps in the choice of a stable pivot.
harris_ratio = std::min(
harris_ratio,
std::max(minimum_delta / top.coeff_magnitude,
top.ratio + harris_tolerance / top.coeff_magnitude));
if (top.coeff_magnitude == best_coeff && top.ratio == step) {
DCHECK_NE(*entering_col, kInvalidCol);
equivalent_entering_choices_.push_back(top.col);
} else {
equivalent_entering_choices_.clear();
best_coeff = top.coeff_magnitude;
*entering_col = top.col;
// Note that the step is not directly used, so it is okay to leave it
// negative.
step = top.ratio;
}
}
// Remove the top breakpoint and maintain the heap structure.
// This is the same as doing a pop() on a priority_queue.
std::pop_heap(breakpoints_.begin(), breakpoints_.end());
breakpoints_.pop_back();
}
// Break the ties randomly.
if (!equivalent_entering_choices_.empty()) {
equivalent_entering_choices_.push_back(*entering_col);
*entering_col =
equivalent_entering_choices_[std::uniform_int_distribution<int>(
0, equivalent_entering_choices_.size() - 1)(random_)];
IF_STATS_ENABLED(
stats_.num_perfect_ties.Add(equivalent_entering_choices_.size()));
}
if (*entering_col == kInvalidCol) return Status::OK();
// If best_coeff is small and they are potential bound flips, we can take a
// smaller step but use a good pivot.
const Fractional pivot_limit = parameters_.minimum_acceptable_pivot();
if (best_coeff < pivot_limit && !bound_flip_candidates->empty()) {
// Note that it is okay to leave more candidate than necessary in the
// returned bound_flip_candidates vector.
for (int i = bound_flip_candidates->size() - 1; i >= 0; --i) {
const ColIndex col = (*bound_flip_candidates)[i];
if (std::abs(update_coefficients[col]) < pivot_limit) continue;
VLOG(1) << "Used bound flip to avoid bad pivot. Before: " << best_coeff
<< " now: " << std::abs(update_coefficients[col]);
*entering_col = col;
break;
}
}
return Status::OK();
}
Status EnteringVariable::DualPhaseIChooseEnteringColumn(
bool nothing_to_recompute, const UpdateRow& update_row,
Fractional cost_variation, ColIndex* entering_col) {
GLOP_RETURN_ERROR_IF_NULL(entering_col);
const auto update_coefficients = update_row.GetCoefficients().const_view();
const auto reduced_costs = reduced_costs_->GetReducedCosts().const_view();
SCOPED_TIME_STAT(&stats_);
// List of breakpoints where a variable change from feasibility to
// infeasibility or the opposite.
breakpoints_.clear();
breakpoints_.reserve(update_row.GetNonZeroPositions().size());
const Fractional threshold = nothing_to_recompute
? parameters_.minimum_acceptable_pivot()
: parameters_.ratio_test_zero_threshold();
const Fractional dual_feasibility_tolerance =
reduced_costs_->GetDualFeasibilityTolerance();
const Fractional harris_tolerance =
parameters_.harris_tolerance_ratio() * dual_feasibility_tolerance;
const Fractional minimum_delta =
parameters_.degenerate_ministep_factor() * dual_feasibility_tolerance;
const DenseBitRow& can_decrease = variables_info_.GetCanDecreaseBitRow();
const DenseBitRow& can_increase = variables_info_.GetCanIncreaseBitRow();
const VariableTypeRow& variable_type = variables_info_.GetTypeRow();
num_operations_ += 10 * update_row.GetNonZeroPositions().size();
for (const ColIndex col : update_row.GetNonZeroPositions()) {
// Boxed variables shouldn't be in the update position list because they
// will be dealt with afterwards by MakeBoxedVariableDualFeasible().
DCHECK_NE(variable_type[col], VariableType::UPPER_AND_LOWER_BOUNDED);
// Fixed variable shouldn't be in the update position list.
DCHECK_NE(variable_type[col], VariableType::FIXED_VARIABLE);
// Skip if the coeff is too small to be a numerically stable pivot.
if (std::abs(update_coefficients[col]) < threshold) continue;
// We will add ratio * coeff to this column. cost_variation makes sure
// the leaving variable will be dual-feasible (its update coeff is
// sign(cost_variation) * 1.0).
//
// TODO(user): This is the same in DualChooseEnteringColumn(), remove
// duplication?
const Fractional coeff = (cost_variation > 0.0) ? update_coefficients[col]
: -update_coefficients[col];
// Only proceed if there is a transition, note that if reduced_costs[col]
// is close to zero, then the variable is counted as dual-feasible.
if (std::abs(reduced_costs[col]) <= dual_feasibility_tolerance) {
// Continue if the variation goes in the dual-feasible direction.
if (coeff > 0 && !can_decrease.IsSet(col)) continue;
if (coeff < 0 && !can_increase.IsSet(col)) continue;
// For an already dual-infeasible variable, we allow to push it until
// the harris_tolerance. But if it is past that or close to it, we also
// always enforce a minimum push.
if (coeff * reduced_costs[col] > 0.0) {
breakpoints_.push_back(ColWithRatio(
col,
std::max(minimum_delta,
harris_tolerance - std::abs(reduced_costs[col])),
std::abs(coeff)));
continue;
}
} else {
// If the two are of the same sign, there is no transition, skip.
if (coeff * reduced_costs[col] > 0.0) continue;
}
// We are sure there is a transition, add it to the set of breakpoints.
breakpoints_.push_back(ColWithRatio(
col, std::abs(reduced_costs[col]) + harris_tolerance, std::abs(coeff)));
}
// Process the breakpoints in priority order.
std::make_heap(breakpoints_.begin(), breakpoints_.end());
// Because of our priority queue, it is easy to choose a sub-optimal step to
// have a stable pivot. The pivot with the highest magnitude and that reduces
// the infeasibility the most is chosen.
Fractional pivot_magnitude = 0.0;
// Select the last breakpoint that still improves the infeasibility and has a
// numerically stable pivot.
*entering_col = kInvalidCol;
Fractional step = -1.0;
Fractional improvement = std::abs(cost_variation);
while (!breakpoints_.empty()) {
const ColWithRatio top = breakpoints_.front();
// We keep the greatest coeff_magnitude for the same ratio.
DCHECK(top.ratio > step ||
(top.ratio == step && top.coeff_magnitude <= pivot_magnitude));
if (top.ratio > step && top.coeff_magnitude >= pivot_magnitude) {
*entering_col = top.col;
step = top.ratio;
pivot_magnitude = top.coeff_magnitude;
}
improvement -= top.coeff_magnitude;
// If the variable is free, then not only do we loose the infeasibility
// improvment, we also render it worse if we keep going in the same
// direction.
if (can_decrease.IsSet(top.col) && can_increase.IsSet(top.col) &&
std::abs(reduced_costs[top.col]) > threshold) {
improvement -= top.coeff_magnitude;
}
if (improvement <= 0.0) break;
std::pop_heap(breakpoints_.begin(), breakpoints_.end());
breakpoints_.pop_back();
}
return Status::OK();
}
void EnteringVariable::SetParameters(const GlopParameters& parameters) {
parameters_ = parameters;
}
} // namespace glop
} // namespace operations_research