forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
initial_basis.h
135 lines (114 loc) · 5.86 KB
/
initial_basis.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OR_TOOLS_GLOP_INITIAL_BASIS_H_
#define OR_TOOLS_GLOP_INITIAL_BASIS_H_
#include <vector>
#include "ortools/lp_data/lp_data.h"
#include "ortools/lp_data/lp_types.h"
#include "ortools/lp_data/sparse.h"
namespace operations_research {
namespace glop {
// This class implements two initial basis algorithms. The idea is to replace as
// much as possible the columns of B that correspond to fixed slack variables
// with some column of A in order to have more freedom in the values the basic
// variables can take.
//
// The first algorithm is Bixby's initial basis algorithm, described in the
// paper below. It considers the columns of A in a particular order (the ones
// with more freedom first) and adds the current column to the basis if it keeps
// B almost triangular and with coefficients close to 1.0 on the diagonal for
// good numerical stability.
//
// Robert E. Bixby, "Implementing the Simplex Method: The Initial Basis"
// ORSA Jounal on Computing, Vol. 4, No. 3, Summer 1992.
// http://joc.journal.informs.org/content/4/3/267.abstract
//
// The second algorithm is is similar to the "advanced initial basis" that GLPK
// uses by default. It adds columns one by one to the basis B while keeping it
// triangular (not almost triangular as in Bixby's algorithm). The next
// column to add is chosen amongst the set of possible candidates using a
// heuristic similar to the one used by Bixby.
class InitialBasis {
public:
// Takes references to the linear program data we need.
InitialBasis(const CompactSparseMatrix& compact_matrix,
const DenseRow& objective, const DenseRow& lower_bound,
const DenseRow& upper_bound,
const VariableTypeRow& variable_type);
// Completes the entries of the given basis that are equal to kInvalidCol with
// one of the first num_cols columns of A using Bixby's algorithm.
//
// Important: For this function, the matrix must be scaled such that the
// maximum absolute value in each column is 1.0.
void CompleteBixbyBasis(ColIndex num_cols, RowToColMapping* basis);
// Similar to CompleteBixbyBasis() but completes the basis into a triangular
// one. This function usually produces better initial bases. The dual version
// just restricts the possible entering columns to the ones with a cost of 0.0
// in order to always start with the all-zeros vector of dual values.
//
// Returns false if an error occurred during the algorithm (numerically
// instable basis).
void CompleteTriangularPrimalBasis(ColIndex num_cols, RowToColMapping* basis);
void CompleteTriangularDualBasis(ColIndex num_cols, RowToColMapping* basis);
// Use Maros's LTSF crash from the book "Computational Techniques of the
// Simplex Method". Unlike the other crashes this does not use the initial
// content of the basis parameter.
void GetPrimalMarosBasis(ColIndex num_cols, RowToColMapping* basis);
void GetDualMarosBasis(ColIndex num_cols, RowToColMapping* basis);
// Visible for testing. Computes a list of candidate column indices out of the
// fist num_candidate_columns of A and sorts them using the
// bixby_column_comparator_. This also fills max_scaled_abs_cost_.
void ComputeCandidates(ColIndex num_cols, std::vector<ColIndex>* candidates);
private:
// Internal implementation of the Primal/Dual CompleteTriangularBasis().
void CompleteTriangularBasis(ColIndex num_cols, RowToColMapping* basis, bool only_allow_zero_cost_column);
void GetMarosBasis(ColIndex num_cols, RowToColMapping* basis, bool only_allow_zero_cost_column);
// Returns an integer representing the order (the lower the better)
// between column categories (known as C2, C3 or C4 in the paper).
// Also returns a greater index for fixed columns.
int GetColumnCategory(ColIndex col) const;
// Row and column priorities for Maros crash.
int GetMarosPriority(RowIndex row) const;
int GetMarosPriority(ColIndex col) const;
// Returns the penalty (the lower the better) of a column. This is 'q_j' for a
// column 'j' in the paper.
Fractional GetColumnPenalty(ColIndex col) const;
// Maximum scaled absolute value of the objective for the columns which are
// entering candidates. This is used by GetColumnPenalty().
Fractional max_scaled_abs_cost_;
// Comparator used to sort column indices according to their penalty.
// Lower is better.
struct BixbyColumnComparator {
explicit BixbyColumnComparator(const InitialBasis& initial_basis)
: initial_basis_(initial_basis) {}
bool operator()(ColIndex col_a, ColIndex col_b) const;
const InitialBasis& initial_basis_;
} bixby_column_comparator_;
// Comparator used by CompleteTriangularBasis(). Note that this one is meant
// to be used by a priority queue, so higher is better.
struct TriangularColumnComparator {
explicit TriangularColumnComparator(const InitialBasis& initial_basis)
: initial_basis_(initial_basis) {}
bool operator()(ColIndex col_a, ColIndex col_b) const;
const InitialBasis& initial_basis_;
} triangular_column_comparator_;
const CompactSparseMatrix& compact_matrix_;
const DenseRow& objective_;
const DenseRow& lower_bound_;
const DenseRow& upper_bound_;
const VariableTypeRow& variable_type_;
DISALLOW_COPY_AND_ASSIGN(InitialBasis);
};
} // namespace glop
} // namespace operations_research
#endif // OR_TOOLS_GLOP_INITIAL_BASIS_H_