forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lp_solver.cc
1116 lines (1026 loc) · 47.6 KB
/
lp_solver.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/glop/lp_solver.h"
#include <algorithm>
#include <cmath>
#include <memory>
#include <stack>
#include <string>
#include <vector>
#include "absl/memory/memory.h"
#include "absl/strings/match.h"
#include "absl/strings/str_format.h"
#include "absl/strings/str_join.h"
#include "ortools/base/commandlineflags.h"
#include "ortools/base/integral_types.h"
#include "ortools/base/timer.h"
#include "ortools/glop/preprocessor.h"
#include "ortools/glop/status.h"
#include "ortools/lp_data/lp_types.h"
#include "ortools/lp_data/lp_utils.h"
#include "ortools/lp_data/proto_utils.h"
#include "ortools/util/fp_utils.h"
// TODO(user): abstract this in some way to the port directory.
#ifndef __PORTABLE_PLATFORM__
#include "ortools/util/file_util.h"
#endif
ABSL_FLAG(bool, lp_dump_to_proto_file, false,
"Tells whether do dump the problem to a protobuf file.");
ABSL_FLAG(bool, lp_dump_compressed_file, true,
"Whether the proto dump file is compressed.");
ABSL_FLAG(bool, lp_dump_binary_file, false,
"Whether the proto dump file is binary.");
ABSL_FLAG(int, lp_dump_file_number, -1,
"Number for the dump file, in the form name-000048.pb. "
"If < 0, the file is automatically numbered from the number of "
"calls to LPSolver::Solve().");
ABSL_FLAG(std::string, lp_dump_dir, "/tmp",
"Directory where dump files are written.");
ABSL_FLAG(std::string, lp_dump_file_basename, "",
"Base name for dump files. LinearProgram::name_ is used if "
"lp_dump_file_basename is empty. If LinearProgram::name_ is "
"empty, \"linear_program_dump_file\" is used.");
ABSL_FLAG(std::string, glop_params, "",
"Override any user parameters with the value of this flag. This is "
"interpreted as a GlopParameters proto in text format.");
namespace operations_research {
namespace glop {
namespace {
// Writes a LinearProgram to a file if FLAGS_lp_dump_to_proto_file is true. The
// integer num is appended to the base name of the file. When this function is
// called from LPSolver::Solve(), num is usually the number of times Solve() was
// called. For a LinearProgram whose name is "LinPro", and num = 48, the default
// output file will be /tmp/LinPro-000048.pb.gz.
//
// Warning: is a no-op on portable platforms (android, ios, etc).
void DumpLinearProgramIfRequiredByFlags(const LinearProgram& linear_program,
int num) {
if (!absl::GetFlag(FLAGS_lp_dump_to_proto_file)) return;
#ifdef __PORTABLE_PLATFORM__
LOG(WARNING) << "DumpLinearProgramIfRequiredByFlags(linear_program, num) "
"requested for linear_program.name()='"
<< linear_program.name() << "', num=" << num
<< " but is not implemented for this platform.";
#else
std::string filename = absl::GetFlag(FLAGS_lp_dump_file_basename);
if (filename.empty()) {
if (linear_program.name().empty()) {
filename = "linear_program_dump";
} else {
filename = linear_program.name();
}
}
const int file_num = absl::GetFlag(FLAGS_lp_dump_file_number) >= 0
? absl::GetFlag(FLAGS_lp_dump_file_number)
: num;
absl::StrAppendFormat(&filename, "-%06d.pb", file_num);
const std::string filespec =
absl::StrCat(absl::GetFlag(FLAGS_lp_dump_dir), "/", filename);
MPModelProto proto;
LinearProgramToMPModelProto(linear_program, &proto);
const ProtoWriteFormat write_format = absl::GetFlag(FLAGS_lp_dump_binary_file)
? ProtoWriteFormat::kProtoBinary
: ProtoWriteFormat::kProtoText;
if (!WriteProtoToFile(filespec, proto, write_format,
absl::GetFlag(FLAGS_lp_dump_compressed_file))) {
LOG(DFATAL) << "Could not write " << filespec;
}
#endif
}
} // anonymous namespace
// --------------------------------------------------------
// LPSolver
// --------------------------------------------------------
LPSolver::LPSolver() : num_solves_(0) {}
void LPSolver::SetParameters(const GlopParameters& parameters) {
parameters_ = parameters;
#ifndef __PORTABLE_PLATFORM__
if (!absl::GetFlag(FLAGS_glop_params).empty()) {
GlopParameters flag_params;
CHECK(google::protobuf::TextFormat::ParseFromString(
absl::GetFlag(FLAGS_glop_params), &flag_params));
parameters_.MergeFrom(flag_params);
}
#endif
}
const GlopParameters& LPSolver::GetParameters() const { return parameters_; }
GlopParameters* LPSolver::GetMutableParameters() { return ¶meters_; }
SolverLogger& LPSolver::GetSolverLogger() { return logger_; }
ProblemStatus LPSolver::Solve(const LinearProgram& lp) {
std::unique_ptr<TimeLimit> time_limit =
TimeLimit::FromParameters(parameters_);
return SolveWithTimeLimit(lp, time_limit.get());
}
ProblemStatus LPSolver::SolveWithTimeLimit(const LinearProgram& lp,
TimeLimit* time_limit) {
if (time_limit == nullptr) {
LOG(DFATAL) << "SolveWithTimeLimit() called with a nullptr time_limit.";
return ProblemStatus::ABNORMAL;
}
++num_solves_;
num_revised_simplex_iterations_ = 0;
DumpLinearProgramIfRequiredByFlags(lp, num_solves_);
// Display a warning if running in non-opt, unless we're inside a unit test.
DLOG(WARNING)
<< "\n******************************************************************"
"\n* WARNING: Glop will be very slow because it will use DCHECKs *"
"\n* to verify the results and the precision of the solver. *"
"\n* You can gain at least an order of magnitude speedup by *"
"\n* compiling with optimizations enabled and by defining NDEBUG. *"
"\n******************************************************************";
// Setup the logger.
logger_.EnableLogging(parameters_.log_search_progress());
logger_.SetLogToStdOut(parameters_.log_to_stdout());
if (!parameters_.log_search_progress() && VLOG_IS_ON(1)) {
logger_.EnableLogging(true);
logger_.SetLogToStdOut(false);
}
// Log some initial info about the input model.
if (logger_.LoggingIsEnabled()) {
SOLVER_LOG(&logger_, "");
SOLVER_LOG(&logger_, "Initial problem: ", lp.GetDimensionString());
SOLVER_LOG(&logger_, "Objective stats: ", lp.GetObjectiveStatsString());
SOLVER_LOG(&logger_, "Bounds stats: ", lp.GetBoundsStatsString());
}
// Check some preconditions.
if (!lp.IsCleanedUp()) {
LOG(DFATAL) << "The columns of the given linear program should be ordered "
<< "by row and contain no zero coefficients. Call CleanUp() "
<< "on it before calling Solve().";
ResizeSolution(lp.num_constraints(), lp.num_variables());
return ProblemStatus::INVALID_PROBLEM;
}
// TODO(user): Unfortunately we are not really helpful with the error message
// here. We could do a better job. However most client should talk to glop via
// an input protocol buffer which should have better validation messages.
if (!lp.IsValid(parameters_.max_valid_magnitude())) {
SOLVER_LOG(&logger_,
"The given linear program is invalid. It contains NaNs, "
"coefficients too large or invalid bounds specification.");
ResizeSolution(lp.num_constraints(), lp.num_variables());
return ProblemStatus::INVALID_PROBLEM;
}
// Make an internal copy of the problem for the preprocessing.
current_linear_program_.PopulateFromLinearProgram(lp);
// Preprocess.
MainLpPreprocessor preprocessor(¶meters_);
preprocessor.SetLogger(&logger_);
preprocessor.SetTimeLimit(time_limit);
const bool postsolve_is_needed = preprocessor.Run(¤t_linear_program_);
if (logger_.LoggingIsEnabled()) {
SOLVER_LOG(&logger_, "");
SOLVER_LOG(&logger_, "Presolved problem: ",
current_linear_program_.GetDimensionString());
SOLVER_LOG(&logger_, "Objective stats: ",
current_linear_program_.GetObjectiveStatsString());
SOLVER_LOG(&logger_, "Bounds stats: ",
current_linear_program_.GetBoundsStatsString());
}
// At this point, we need to initialize a ProblemSolution with the correct
// size and status.
ProblemSolution solution(current_linear_program_.num_constraints(),
current_linear_program_.num_variables());
solution.status = preprocessor.status();
// LoadAndVerifySolution() below updates primal_values_, dual_values_,
// variable_statuses_ and constraint_statuses_ with the values stored in
// solution by RunPrimalDualPathFollowingMethodIfNeeded() and
// RunRevisedSimplexIfNeeded(), and hence clears any results stored in them
// from a previous run. In contrast, primal_ray_, constraints_dual_ray_, and
// variable_bounds_dual_ray_ are modified directly by
// RunRevisedSimplexIfNeeded(), so we explicitly clear them from previous run
// results.
primal_ray_.clear();
constraints_dual_ray_.clear();
variable_bounds_dual_ray_.clear();
// Do not launch the solver if the time limit was already reached. This might
// mean that the pre-processors were not all run, and current_linear_program_
// might not be in a completely safe state.
if (!time_limit->LimitReached()) {
RunRevisedSimplexIfNeeded(&solution, time_limit);
}
if (postsolve_is_needed) preprocessor.DestructiveRecoverSolution(&solution);
const ProblemStatus status = LoadAndVerifySolution(lp, solution);
// LOG some statistics that can be parsed by our benchmark script.
if (logger_.LoggingIsEnabled()) {
SOLVER_LOG(&logger_, "status: ", GetProblemStatusString(status));
SOLVER_LOG(&logger_, "objective: ", GetObjectiveValue());
SOLVER_LOG(&logger_, "iterations: ", GetNumberOfSimplexIterations());
SOLVER_LOG(&logger_, "time: ", time_limit->GetElapsedTime());
SOLVER_LOG(&logger_, "deterministic_time: ",
time_limit->GetElapsedDeterministicTime());
SOLVER_LOG(&logger_, "");
}
return status;
}
void LPSolver::Clear() {
ResizeSolution(RowIndex(0), ColIndex(0));
revised_simplex_.reset(nullptr);
}
void LPSolver::SetInitialBasis(
const VariableStatusRow& variable_statuses,
const ConstraintStatusColumn& constraint_statuses) {
// Create the associated basis state.
BasisState state;
state.statuses = variable_statuses;
for (const ConstraintStatus status : constraint_statuses) {
// Note the change of upper/lower bound between the status of a constraint
// and the status of its associated slack variable.
switch (status) {
case ConstraintStatus::FREE:
state.statuses.push_back(VariableStatus::FREE);
break;
case ConstraintStatus::AT_LOWER_BOUND:
state.statuses.push_back(VariableStatus::AT_UPPER_BOUND);
break;
case ConstraintStatus::AT_UPPER_BOUND:
state.statuses.push_back(VariableStatus::AT_LOWER_BOUND);
break;
case ConstraintStatus::FIXED_VALUE:
state.statuses.push_back(VariableStatus::FIXED_VALUE);
break;
case ConstraintStatus::BASIC:
state.statuses.push_back(VariableStatus::BASIC);
break;
}
}
if (revised_simplex_ == nullptr) {
revised_simplex_ = std::make_unique<RevisedSimplex>();
revised_simplex_->SetLogger(&logger_);
}
revised_simplex_->LoadStateForNextSolve(state);
if (parameters_.use_preprocessing()) {
LOG(WARNING) << "In GLOP, SetInitialBasis() was called but the parameter "
"use_preprocessing is true, this will likely not result in "
"what you want.";
}
}
namespace {
// Computes the "real" problem objective from the one without offset nor
// scaling.
Fractional ProblemObjectiveValue(const LinearProgram& lp, Fractional value) {
return lp.objective_scaling_factor() * (value + lp.objective_offset());
}
// Returns the allowed error magnitude for something that should evaluate to
// value under the given tolerance.
Fractional AllowedError(Fractional tolerance, Fractional value) {
return tolerance * std::max(1.0, std::abs(value));
}
} // namespace
// TODO(user): Try to also check the precision of an INFEASIBLE or UNBOUNDED
// return status.
ProblemStatus LPSolver::LoadAndVerifySolution(const LinearProgram& lp,
const ProblemSolution& solution) {
SOLVER_LOG(&logger_, "");
SOLVER_LOG(&logger_, "Final unscaled solution:");
if (!IsProblemSolutionConsistent(lp, solution)) {
SOLVER_LOG(&logger_, "Inconsistency detected in the solution.");
ResizeSolution(lp.num_constraints(), lp.num_variables());
return ProblemStatus::ABNORMAL;
}
// Load the solution.
primal_values_ = solution.primal_values;
dual_values_ = solution.dual_values;
variable_statuses_ = solution.variable_statuses;
constraint_statuses_ = solution.constraint_statuses;
ProblemStatus status = solution.status;
// Objective before eventually moving the primal/dual values inside their
// bounds.
ComputeReducedCosts(lp);
const Fractional primal_objective_value = ComputeObjective(lp);
const Fractional dual_objective_value = ComputeDualObjective(lp);
SOLVER_LOG(&logger_, "Primal objective (before moving primal/dual values) = ",
absl::StrFormat(
"%.15E", ProblemObjectiveValue(lp, primal_objective_value)));
SOLVER_LOG(&logger_, "Dual objective (before moving primal/dual values) = ",
absl::StrFormat("%.15E",
ProblemObjectiveValue(lp, dual_objective_value)));
// Eventually move the primal/dual values inside their bounds.
if (status == ProblemStatus::OPTIMAL &&
parameters_.provide_strong_optimal_guarantee()) {
MovePrimalValuesWithinBounds(lp);
MoveDualValuesWithinBounds(lp);
}
// The reported objective to the user.
problem_objective_value_ = ProblemObjectiveValue(lp, ComputeObjective(lp));
SOLVER_LOG(&logger_, "Primal objective (after moving primal/dual values) = ",
absl::StrFormat("%.15E", problem_objective_value_));
ComputeReducedCosts(lp);
ComputeConstraintActivities(lp);
// These will be set to true if the associated "infeasibility" is too large.
//
// The tolerance used is the parameter solution_feasibility_tolerance. To be
// somewhat independent of the original problem scaling, the thresholds used
// depend of the quantity involved and of its coordinates:
// - tolerance * max(1.0, abs(cost[col])) when a reduced cost is infeasible.
// - tolerance * max(1.0, abs(bound)) when a bound is crossed.
// - tolerance for an infeasible dual value (because the limit is always 0.0).
bool rhs_perturbation_is_too_large = false;
bool cost_perturbation_is_too_large = false;
bool primal_infeasibility_is_too_large = false;
bool dual_infeasibility_is_too_large = false;
bool primal_residual_is_too_large = false;
bool dual_residual_is_too_large = false;
// Computes all the infeasiblities and update the Booleans above.
ComputeMaxRhsPerturbationToEnforceOptimality(lp,
&rhs_perturbation_is_too_large);
ComputeMaxCostPerturbationToEnforceOptimality(
lp, &cost_perturbation_is_too_large);
const double primal_infeasibility =
ComputePrimalValueInfeasibility(lp, &primal_infeasibility_is_too_large);
const double dual_infeasibility =
ComputeDualValueInfeasibility(lp, &dual_infeasibility_is_too_large);
const double primal_residual =
ComputeActivityInfeasibility(lp, &primal_residual_is_too_large);
const double dual_residual =
ComputeReducedCostInfeasibility(lp, &dual_residual_is_too_large);
// TODO(user): the name is not really consistent since in practice those are
// the "residual" since the primal/dual infeasibility are zero when
// parameters_.provide_strong_optimal_guarantee() is true.
max_absolute_primal_infeasibility_ =
std::max(primal_infeasibility, primal_residual);
max_absolute_dual_infeasibility_ =
std::max(dual_infeasibility, dual_residual);
SOLVER_LOG(&logger_, "Max. primal infeasibility = ",
max_absolute_primal_infeasibility_);
SOLVER_LOG(&logger_,
"Max. dual infeasibility = ", max_absolute_dual_infeasibility_);
// Now that all the relevant quantities are computed, we check the precision
// and optimality of the result. See Chvatal pp. 61-62. If any of the tests
// fail, we return the IMPRECISE status.
const double objective_error_ub = ComputeMaxExpectedObjectiveError(lp);
SOLVER_LOG(&logger_, "Objective error <= ", objective_error_ub);
if (status == ProblemStatus::OPTIMAL &&
parameters_.provide_strong_optimal_guarantee()) {
// If the primal/dual values were moved to the bounds, then the primal/dual
// infeasibilities should be exactly zero (but not the residuals).
if (primal_infeasibility != 0.0 || dual_infeasibility != 0.0) {
LOG(ERROR) << "Primal/dual values have been moved to their bounds. "
<< "Therefore the primal/dual infeasibilities should be "
<< "exactly zero (but not the residuals). If this message "
<< "appears, there is probably a bug in "
<< "MovePrimalValuesWithinBounds() or in "
<< "MoveDualValuesWithinBounds().";
}
if (rhs_perturbation_is_too_large) {
SOLVER_LOG(&logger_, "The needed rhs perturbation is too large !!");
if (parameters_.change_status_to_imprecise()) {
status = ProblemStatus::IMPRECISE;
}
}
if (cost_perturbation_is_too_large) {
SOLVER_LOG(&logger_, "The needed cost perturbation is too large !!");
if (parameters_.change_status_to_imprecise()) {
status = ProblemStatus::IMPRECISE;
}
}
}
// Note that we compare the values without offset nor scaling. We also need to
// compare them before we move the primal/dual values, otherwise we lose some
// precision since the values are modified independently of each other.
if (status == ProblemStatus::OPTIMAL) {
if (std::abs(primal_objective_value - dual_objective_value) >
objective_error_ub) {
SOLVER_LOG(&logger_,
"The objective gap of the final solution is too large.");
if (parameters_.change_status_to_imprecise()) {
status = ProblemStatus::IMPRECISE;
}
}
}
if ((status == ProblemStatus::OPTIMAL ||
status == ProblemStatus::PRIMAL_FEASIBLE) &&
(primal_residual_is_too_large || primal_infeasibility_is_too_large)) {
SOLVER_LOG(&logger_,
"The primal infeasibility of the final solution is too large.");
if (parameters_.change_status_to_imprecise()) {
status = ProblemStatus::IMPRECISE;
}
}
if ((status == ProblemStatus::OPTIMAL ||
status == ProblemStatus::DUAL_FEASIBLE) &&
(dual_residual_is_too_large || dual_infeasibility_is_too_large)) {
SOLVER_LOG(&logger_,
"The dual infeasibility of the final solution is too large.");
if (parameters_.change_status_to_imprecise()) {
status = ProblemStatus::IMPRECISE;
}
}
may_have_multiple_solutions_ =
(status == ProblemStatus::OPTIMAL) ? IsOptimalSolutionOnFacet(lp) : false;
return status;
}
bool LPSolver::IsOptimalSolutionOnFacet(const LinearProgram& lp) {
// Note(user): We use the following same two tolerances for the dual and
// primal values.
// TODO(user): investigate whether to use the tolerances defined in
// parameters.proto.
const double kReducedCostTolerance = 1e-9;
const double kBoundTolerance = 1e-7;
const ColIndex num_cols = lp.num_variables();
for (ColIndex col(0); col < num_cols; ++col) {
if (variable_statuses_[col] == VariableStatus::FIXED_VALUE) continue;
const Fractional lower_bound = lp.variable_lower_bounds()[col];
const Fractional upper_bound = lp.variable_upper_bounds()[col];
const Fractional value = primal_values_[col];
if (AreWithinAbsoluteTolerance(reduced_costs_[col], 0.0,
kReducedCostTolerance) &&
(AreWithinAbsoluteTolerance(value, lower_bound, kBoundTolerance) ||
AreWithinAbsoluteTolerance(value, upper_bound, kBoundTolerance))) {
return true;
}
}
const RowIndex num_rows = lp.num_constraints();
for (RowIndex row(0); row < num_rows; ++row) {
if (constraint_statuses_[row] == ConstraintStatus::FIXED_VALUE) continue;
const Fractional lower_bound = lp.constraint_lower_bounds()[row];
const Fractional upper_bound = lp.constraint_upper_bounds()[row];
const Fractional activity = constraint_activities_[row];
if (AreWithinAbsoluteTolerance(dual_values_[row], 0.0,
kReducedCostTolerance) &&
(AreWithinAbsoluteTolerance(activity, lower_bound, kBoundTolerance) ||
AreWithinAbsoluteTolerance(activity, upper_bound, kBoundTolerance))) {
return true;
}
}
return false;
}
Fractional LPSolver::GetObjectiveValue() const {
return problem_objective_value_;
}
Fractional LPSolver::GetMaximumPrimalInfeasibility() const {
return max_absolute_primal_infeasibility_;
}
Fractional LPSolver::GetMaximumDualInfeasibility() const {
return max_absolute_dual_infeasibility_;
}
bool LPSolver::MayHaveMultipleOptimalSolutions() const {
return may_have_multiple_solutions_;
}
int LPSolver::GetNumberOfSimplexIterations() const {
return num_revised_simplex_iterations_;
}
double LPSolver::DeterministicTime() const {
return revised_simplex_ == nullptr ? 0.0
: revised_simplex_->DeterministicTime();
}
void LPSolver::MovePrimalValuesWithinBounds(const LinearProgram& lp) {
const ColIndex num_cols = lp.num_variables();
DCHECK_EQ(num_cols, primal_values_.size());
Fractional error = 0.0;
for (ColIndex col(0); col < num_cols; ++col) {
const Fractional lower_bound = lp.variable_lower_bounds()[col];
const Fractional upper_bound = lp.variable_upper_bounds()[col];
DCHECK_LE(lower_bound, upper_bound);
error = std::max(error, primal_values_[col] - upper_bound);
error = std::max(error, lower_bound - primal_values_[col]);
primal_values_[col] = std::min(primal_values_[col], upper_bound);
primal_values_[col] = std::max(primal_values_[col], lower_bound);
}
SOLVER_LOG(&logger_, "Max. primal values move = ", error);
}
void LPSolver::MoveDualValuesWithinBounds(const LinearProgram& lp) {
const RowIndex num_rows = lp.num_constraints();
DCHECK_EQ(num_rows, dual_values_.size());
const Fractional optimization_sign = lp.IsMaximizationProblem() ? -1.0 : 1.0;
Fractional error = 0.0;
for (RowIndex row(0); row < num_rows; ++row) {
const Fractional lower_bound = lp.constraint_lower_bounds()[row];
const Fractional upper_bound = lp.constraint_upper_bounds()[row];
// For a minimization problem, we want a lower bound.
Fractional minimization_dual_value = optimization_sign * dual_values_[row];
if (lower_bound == -kInfinity && minimization_dual_value > 0.0) {
error = std::max(error, minimization_dual_value);
minimization_dual_value = 0.0;
}
if (upper_bound == kInfinity && minimization_dual_value < 0.0) {
error = std::max(error, -minimization_dual_value);
minimization_dual_value = 0.0;
}
dual_values_[row] = optimization_sign * minimization_dual_value;
}
SOLVER_LOG(&logger_, "Max. dual values move = ", error);
}
void LPSolver::ResizeSolution(RowIndex num_rows, ColIndex num_cols) {
primal_values_.resize(num_cols, 0.0);
reduced_costs_.resize(num_cols, 0.0);
variable_statuses_.resize(num_cols, VariableStatus::FREE);
dual_values_.resize(num_rows, 0.0);
constraint_activities_.resize(num_rows, 0.0);
constraint_statuses_.resize(num_rows, ConstraintStatus::FREE);
}
void LPSolver::RunRevisedSimplexIfNeeded(ProblemSolution* solution,
TimeLimit* time_limit) {
// Note that the transpose matrix is no longer needed at this point.
// This helps reduce the peak memory usage of the solver.
//
// TODO(user): actually, once the linear_program is loaded into the internal
// glop memory, there is no point keeping it around. Add a more complex
// Load/Solve API to RevisedSimplex so we can completely reclaim its memory
// right away.
current_linear_program_.ClearTransposeMatrix();
if (solution->status != ProblemStatus::INIT) return;
if (revised_simplex_ == nullptr) {
revised_simplex_ = std::make_unique<RevisedSimplex>();
revised_simplex_->SetLogger(&logger_);
}
revised_simplex_->SetParameters(parameters_);
if (revised_simplex_->Solve(current_linear_program_, time_limit).ok()) {
num_revised_simplex_iterations_ = revised_simplex_->GetNumberOfIterations();
solution->status = revised_simplex_->GetProblemStatus();
// Make sure we do not copy the slacks added by revised_simplex_.
const ColIndex num_cols = solution->primal_values.size();
DCHECK_LE(num_cols, revised_simplex_->GetProblemNumCols());
for (ColIndex col(0); col < num_cols; ++col) {
solution->primal_values[col] = revised_simplex_->GetVariableValue(col);
solution->variable_statuses[col] =
revised_simplex_->GetVariableStatus(col);
}
const RowIndex num_rows = revised_simplex_->GetProblemNumRows();
DCHECK_EQ(solution->dual_values.size(), num_rows);
for (RowIndex row(0); row < num_rows; ++row) {
solution->dual_values[row] = revised_simplex_->GetDualValue(row);
solution->constraint_statuses[row] =
revised_simplex_->GetConstraintStatus(row);
}
if (!parameters_.use_preprocessing() && !parameters_.use_scaling()) {
if (solution->status == ProblemStatus::PRIMAL_UNBOUNDED) {
primal_ray_ = revised_simplex_->GetPrimalRay();
// Make sure we do not copy the slacks added by revised_simplex_.
primal_ray_.resize(num_cols);
} else if (solution->status == ProblemStatus::DUAL_UNBOUNDED) {
constraints_dual_ray_ = revised_simplex_->GetDualRay();
variable_bounds_dual_ray_ =
revised_simplex_->GetDualRayRowCombination();
// Make sure we do not copy the slacks added by revised_simplex_.
variable_bounds_dual_ray_.resize(num_cols);
// Revised simplex's GetDualRay is always such that GetDualRay.rhs < 0,
// which is a cost improving direction for the dual if the primal is a
// maximization problem (i.e. when the dual is a minimization problem).
// Hence, we change the sign of constraints_dual_ray_ for min problems.
//
// Revised simplex's GetDualRayRowCombination = A^T GetDualRay and
// we must have variable_bounds_dual_ray_ = - A^T constraints_dual_ray_.
// Then we need to change the sign of variable_bounds_dual_ray_, but for
// min problems this change is implicit because of the sign change of
// constraints_dual_ray_ described above.
if (current_linear_program_.IsMaximizationProblem()) {
ChangeSign(&variable_bounds_dual_ray_);
} else {
ChangeSign(&constraints_dual_ray_);
}
}
}
} else {
SOLVER_LOG(&logger_, "Error during the revised simplex algorithm.");
solution->status = ProblemStatus::ABNORMAL;
}
}
namespace {
void LogVariableStatusError(ColIndex col, Fractional value,
VariableStatus status, Fractional lb,
Fractional ub) {
VLOG(1) << "Variable " << col << " status is "
<< GetVariableStatusString(status) << " but its value is " << value
<< " and its bounds are [" << lb << ", " << ub << "].";
}
void LogConstraintStatusError(RowIndex row, ConstraintStatus status,
Fractional lb, Fractional ub) {
VLOG(1) << "Constraint " << row << " status is "
<< GetConstraintStatusString(status) << " but its bounds are [" << lb
<< ", " << ub << "].";
}
} // namespace
bool LPSolver::IsProblemSolutionConsistent(
const LinearProgram& lp, const ProblemSolution& solution) const {
const RowIndex num_rows = lp.num_constraints();
const ColIndex num_cols = lp.num_variables();
if (solution.variable_statuses.size() != num_cols) return false;
if (solution.constraint_statuses.size() != num_rows) return false;
if (solution.primal_values.size() != num_cols) return false;
if (solution.dual_values.size() != num_rows) return false;
if (solution.status != ProblemStatus::OPTIMAL &&
solution.status != ProblemStatus::PRIMAL_FEASIBLE &&
solution.status != ProblemStatus::DUAL_FEASIBLE) {
return true;
}
// This checks that the variable statuses verify the properties described
// in the VariableStatus declaration.
RowIndex num_basic_variables(0);
for (ColIndex col(0); col < num_cols; ++col) {
const Fractional value = solution.primal_values[col];
const Fractional lb = lp.variable_lower_bounds()[col];
const Fractional ub = lp.variable_upper_bounds()[col];
const VariableStatus status = solution.variable_statuses[col];
switch (solution.variable_statuses[col]) {
case VariableStatus::BASIC:
// TODO(user): Check that the reduced cost of this column is epsilon
// close to zero.
++num_basic_variables;
break;
case VariableStatus::FIXED_VALUE:
// TODO(user): Because of scaling, it is possible that a FIXED_VALUE
// status (only reserved for the exact lb == ub case) is now set for a
// variable where (ub == lb + epsilon). So we do not check here that the
// two bounds are exactly equal. The best is probably to remove the
// FIXED status from the API completely and report one of AT_LOWER_BOUND
// or AT_UPPER_BOUND instead. This also allows to indicate if at
// optimality, the objective is limited because of this variable lower
// bound or its upper bound. Note that there are other TODOs in the
// codebase about removing this FIXED_VALUE status.
if (value != ub && value != lb) {
LogVariableStatusError(col, value, status, lb, ub);
return false;
}
break;
case VariableStatus::AT_LOWER_BOUND:
if (value != lb || lb == ub) {
LogVariableStatusError(col, value, status, lb, ub);
return false;
}
break;
case VariableStatus::AT_UPPER_BOUND:
// TODO(user): revert to an exact comparison once the bug causing this
// to fail has been fixed.
if (!AreWithinAbsoluteTolerance(value, ub, 1e-7) || lb == ub) {
LogVariableStatusError(col, value, status, lb, ub);
return false;
}
break;
case VariableStatus::FREE:
if (lb != -kInfinity || ub != kInfinity || value != 0.0) {
LogVariableStatusError(col, value, status, lb, ub);
return false;
}
break;
}
}
for (RowIndex row(0); row < num_rows; ++row) {
const Fractional dual_value = solution.dual_values[row];
const Fractional lb = lp.constraint_lower_bounds()[row];
const Fractional ub = lp.constraint_upper_bounds()[row];
const ConstraintStatus status = solution.constraint_statuses[row];
// The activity value is not checked since it is imprecise.
// TODO(user): Check that the activity is epsilon close to the expected
// value.
switch (status) {
case ConstraintStatus::BASIC:
if (dual_value != 0.0) {
VLOG(1) << "Constraint " << row << " is BASIC, but its dual value is "
<< dual_value << " instead of 0.";
return false;
}
++num_basic_variables;
break;
case ConstraintStatus::FIXED_VALUE:
// Exactly the same remark as for the VariableStatus::FIXED_VALUE case
// above. Because of precision error, this can happen when the
// difference between the two bounds is small and not just exactly zero.
if (ub - lb > 1e-12) {
LogConstraintStatusError(row, status, lb, ub);
return false;
}
break;
case ConstraintStatus::AT_LOWER_BOUND:
if (lb == -kInfinity) {
LogConstraintStatusError(row, status, lb, ub);
return false;
}
break;
case ConstraintStatus::AT_UPPER_BOUND:
if (ub == kInfinity) {
LogConstraintStatusError(row, status, lb, ub);
return false;
}
break;
case ConstraintStatus::FREE:
if (dual_value != 0.0) {
VLOG(1) << "Constraint " << row << " is FREE, but its dual value is "
<< dual_value << " instead of 0.";
return false;
}
if (lb != -kInfinity || ub != kInfinity) {
LogConstraintStatusError(row, status, lb, ub);
return false;
}
break;
}
}
// TODO(user): We could check in debug mode (because it will be costly) that
// the basis is actually factorizable.
if (num_basic_variables != num_rows) {
VLOG(1) << "Wrong number of basic variables: " << num_basic_variables;
return false;
}
return true;
}
// This computes by how much the objective must be perturbed to enforce the
// following complementary slackness conditions:
// - Reduced cost is exactly zero for FREE and BASIC variables.
// - Reduced cost is of the correct sign for variables at their bounds.
Fractional LPSolver::ComputeMaxCostPerturbationToEnforceOptimality(
const LinearProgram& lp, bool* is_too_large) {
Fractional max_cost_correction = 0.0;
const ColIndex num_cols = lp.num_variables();
const Fractional optimization_sign = lp.IsMaximizationProblem() ? -1.0 : 1.0;
const Fractional tolerance = parameters_.solution_feasibility_tolerance();
for (ColIndex col(0); col < num_cols; ++col) {
// We correct the reduced cost, so we have a minimization problem and
// thus the dual objective value will be a lower bound of the primal
// objective.
const Fractional reduced_cost = optimization_sign * reduced_costs_[col];
const VariableStatus status = variable_statuses_[col];
if (status == VariableStatus::BASIC || status == VariableStatus::FREE ||
(status == VariableStatus::AT_UPPER_BOUND && reduced_cost > 0.0) ||
(status == VariableStatus::AT_LOWER_BOUND && reduced_cost < 0.0)) {
max_cost_correction =
std::max(max_cost_correction, std::abs(reduced_cost));
*is_too_large |=
std::abs(reduced_cost) >
AllowedError(tolerance, lp.objective_coefficients()[col]);
}
}
SOLVER_LOG(&logger_, "Max. cost perturbation = ", max_cost_correction);
return max_cost_correction;
}
// This computes by how much the rhs must be perturbed to enforce the fact that
// the constraint activities exactly reflect their status.
Fractional LPSolver::ComputeMaxRhsPerturbationToEnforceOptimality(
const LinearProgram& lp, bool* is_too_large) {
Fractional max_rhs_correction = 0.0;
const RowIndex num_rows = lp.num_constraints();
const Fractional tolerance = parameters_.solution_feasibility_tolerance();
for (RowIndex row(0); row < num_rows; ++row) {
const Fractional lower_bound = lp.constraint_lower_bounds()[row];
const Fractional upper_bound = lp.constraint_upper_bounds()[row];
const Fractional activity = constraint_activities_[row];
const ConstraintStatus status = constraint_statuses_[row];
Fractional rhs_error = 0.0;
Fractional allowed_error = 0.0;
if (status == ConstraintStatus::AT_LOWER_BOUND || activity < lower_bound) {
rhs_error = std::abs(activity - lower_bound);
allowed_error = AllowedError(tolerance, lower_bound);
} else if (status == ConstraintStatus::AT_UPPER_BOUND ||
activity > upper_bound) {
rhs_error = std::abs(activity - upper_bound);
allowed_error = AllowedError(tolerance, upper_bound);
}
max_rhs_correction = std::max(max_rhs_correction, rhs_error);
*is_too_large |= rhs_error > allowed_error;
}
SOLVER_LOG(&logger_, "Max. rhs perturbation = ", max_rhs_correction);
return max_rhs_correction;
}
void LPSolver::ComputeConstraintActivities(const LinearProgram& lp) {
const RowIndex num_rows = lp.num_constraints();
const ColIndex num_cols = lp.num_variables();
DCHECK_EQ(num_cols, primal_values_.size());
constraint_activities_.assign(num_rows, 0.0);
for (ColIndex col(0); col < num_cols; ++col) {
lp.GetSparseColumn(col).AddMultipleToDenseVector(primal_values_[col],
&constraint_activities_);
}
}
void LPSolver::ComputeReducedCosts(const LinearProgram& lp) {
const RowIndex num_rows = lp.num_constraints();
const ColIndex num_cols = lp.num_variables();
DCHECK_EQ(num_rows, dual_values_.size());
reduced_costs_.resize(num_cols, 0.0);
for (ColIndex col(0); col < num_cols; ++col) {
reduced_costs_[col] = lp.objective_coefficients()[col] -
ScalarProduct(dual_values_, lp.GetSparseColumn(col));
}
}
double LPSolver::ComputeObjective(const LinearProgram& lp) {
const ColIndex num_cols = lp.num_variables();
DCHECK_EQ(num_cols, primal_values_.size());
KahanSum sum;
for (ColIndex col(0); col < num_cols; ++col) {
sum.Add(lp.objective_coefficients()[col] * primal_values_[col]);
}
return sum.Value();
}
// By the duality theorem, the dual "objective" is a bound on the primal
// objective obtained by taking the linear combinaison of the constraints
// given by dual_values_.
//
// As it is written now, this has no real precise meaning since we ignore
// infeasible reduced costs. This is almost the same as computing the objective
// to the perturbed problem, but then we don't use the pertubed rhs. It is just
// here as an extra "consistency" check.
//
// Note(user): We could actually compute an EXACT lower bound for the cost of
// the non-cost perturbed problem. The idea comes from "Safe bounds in linear
// and mixed-integer linear programming", Arnold Neumaier , Oleg Shcherbina,
// Math Prog, 2003. Note that this requires having some variable bounds that may
// not be in the original problem so that the current dual solution is always
// feasible. It also involves changing the rounding mode to obtain exact
// confidence intervals on the reduced costs.
double LPSolver::ComputeDualObjective(const LinearProgram& lp) {
KahanSum dual_objective;
// Compute the part coming from the row constraints.
const RowIndex num_rows = lp.num_constraints();
const Fractional optimization_sign = lp.IsMaximizationProblem() ? -1.0 : 1.0;
for (RowIndex row(0); row < num_rows; ++row) {
const Fractional lower_bound = lp.constraint_lower_bounds()[row];
const Fractional upper_bound = lp.constraint_upper_bounds()[row];
// We correct the optimization_sign so we have to compute a lower bound.
const Fractional corrected_value = optimization_sign * dual_values_[row];
if (corrected_value > 0.0 && lower_bound != -kInfinity) {
dual_objective.Add(dual_values_[row] * lower_bound);
}
if (corrected_value < 0.0 && upper_bound != kInfinity) {
dual_objective.Add(dual_values_[row] * upper_bound);
}
}
// For a given column associated to a variable x, we want to find a lower
// bound for c.x (where c is the objective coefficient for this column). If we
// write a.x the linear combination of the constraints at this column we have:
// (c + a - c) * x = a * x, and so
// c * x = a * x + (c - a) * x
// Now, if we suppose for example that the reduced cost 'c - a' is positive
// and that x is lower-bounded by 'lb' then the best bound we can get is
// c * x >= a * x + (c - a) * lb.
//
// Note: when summing over all variables, the left side is the primal
// objective and the right side is a lower bound to the objective. In
// particular, a necessary and sufficient condition for both objectives to be
// the same is that all the single variable inequalities above be equalities.
// This is possible only if c == a or if x is at its bound (modulo the
// optimization_sign of the reduced cost), or both (this is one side of the
// complementary slackness conditions, see Chvatal p. 62).
const ColIndex num_cols = lp.num_variables();
for (ColIndex col(0); col < num_cols; ++col) {
const Fractional lower_bound = lp.variable_lower_bounds()[col];
const Fractional upper_bound = lp.variable_upper_bounds()[col];
// Correct the reduced cost, so as to have a minimization problem and
// thus a dual objective that is a lower bound of the primal objective.
const Fractional reduced_cost = optimization_sign * reduced_costs_[col];
// We do not do any correction if the reduced cost is 'infeasible', which is
// the same as computing the objective of the perturbed problem.
Fractional correction = 0.0;
if (variable_statuses_[col] == VariableStatus::AT_LOWER_BOUND &&
reduced_cost > 0.0) {
correction = reduced_cost * lower_bound;
} else if (variable_statuses_[col] == VariableStatus::AT_UPPER_BOUND &&
reduced_cost < 0.0) {
correction = reduced_cost * upper_bound;
} else if (variable_statuses_[col] == VariableStatus::FIXED_VALUE) {
correction = reduced_cost * upper_bound;
}
// Now apply the correction in the right direction!
dual_objective.Add(optimization_sign * correction);
}
return dual_objective.Value();
}
double LPSolver::ComputeMaxExpectedObjectiveError(const LinearProgram& lp) {
const ColIndex num_cols = lp.num_variables();
DCHECK_EQ(num_cols, primal_values_.size());
const Fractional tolerance = parameters_.solution_feasibility_tolerance();
Fractional primal_objective_error = 0.0;
for (ColIndex col(0); col < num_cols; ++col) {
// TODO(user): Be more precise since the non-BASIC variables are exactly at
// their bounds, so for them the error bound is just the term magnitude
// times std::numeric_limits<double>::epsilon() with KahanSum.
primal_objective_error += std::abs(lp.objective_coefficients()[col]) *
AllowedError(tolerance, primal_values_[col]);
}
return primal_objective_error;
}
double LPSolver::ComputePrimalValueInfeasibility(const LinearProgram& lp,
bool* is_too_large) {
double infeasibility = 0.0;
const Fractional tolerance = parameters_.solution_feasibility_tolerance();
const ColIndex num_cols = lp.num_variables();
for (ColIndex col(0); col < num_cols; ++col) {
const Fractional lower_bound = lp.variable_lower_bounds()[col];
const Fractional upper_bound = lp.variable_upper_bounds()[col];
DCHECK(IsFinite(primal_values_[col]));
if (lower_bound == upper_bound) {
const Fractional error = std::abs(primal_values_[col] - upper_bound);
infeasibility = std::max(infeasibility, error);
*is_too_large |= error > AllowedError(tolerance, upper_bound);
continue;
}
if (primal_values_[col] > upper_bound) {
const Fractional error = primal_values_[col] - upper_bound;