forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
assignment.h
130 lines (113 loc) · 4.91 KB
/
assignment.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Simple interface to solve the linear sum assignment problem. It
// uses about twice as much memory as directly using the
// LinearSumAssignment class template, but it is as fast and presents
// a simpler interface. This is the class you should use in most
// situations.
//
// The assignment problem: Given N "left" nodes and N "right" nodes,
// and a set of left->right arcs with integer costs, find a perfect
// matching (i.e., each "left" node is assigned to one "right" node)
// that minimizes the overall cost.
//
// Example usage:
//
// #include "ortools/graph/assignment.h"
//
// SimpleLinearSumAssignment assignment;
// for (int arc = 0; arc < num_arcs; ++arc) {
// assignment.AddArcWithCost(head(arc), tail(arc), cost(arc));
// }
// if (assignment.Solve() == SimpleLinearSumAssignment::OPTIMAL) {
// printf("A perfect matching exists.\n");
// printf("The best possible cost is %d.\n", assignment.OptimalCost());
// printf("An optimal assignment is:\n");
// for (int node = 0; node < assignment.NumNodes(); ++node) {
// printf("left node %d assigned to right node %d with cost %d.\n",
// node,
// assignment.RightMate(node),
// assignment.AssignmentCost(node));
// }
// printf("Note that it may not be the unique optimal assignment.");
// } else {
// printf("There is an issue with the input or no perfect matching exists.");
// }
#ifndef OR_TOOLS_GRAPH_ASSIGNMENT_H_
#define OR_TOOLS_GRAPH_ASSIGNMENT_H_
#include <vector>
#include "ortools/graph/ebert_graph.h"
namespace operations_research {
class SimpleLinearSumAssignment {
public:
// The constructor takes no size.
// New node indices will be created lazily by AddArcWithCost().
SimpleLinearSumAssignment();
// Adds an arc from a left node to a right node with a given cost.
// * Node indices must be non-negative (>= 0). For a perfect
// matching to exist on n nodes, the values taken by "left_node"
// must cover [0, n), same for "right_node".
// * The arc cost can be any integer, negative, positive or zero.
// * After the method finishes, NumArcs() == the returned ArcIndex + 1.
ArcIndex AddArcWithCost(NodeIndex left_node, NodeIndex right_node,
CostValue cost);
// Returns the current number of left nodes which is the same as the
// number of right nodes. This is one greater than the largest node
// index seen so far in AddArcWithCost().
NodeIndex NumNodes() const;
// Returns the current number of arcs in the graph.
ArcIndex NumArcs() const;
// Returns user-provided data.
// The implementation will crash if "arc" is not in [0, NumArcs()).
NodeIndex LeftNode(ArcIndex arc) const;
NodeIndex RightNode(ArcIndex arc) const;
CostValue Cost(ArcIndex arc) const;
// Solves the problem (finds the perfect matching that minimizes the
// cost) and returns the solver status.
enum Status {
OPTIMAL, // The algorithm found a minimum-cost perfect matching.
INFEASIBLE, // The given problem admits no perfect matching.
POSSIBLE_OVERFLOW, // Some cost magnitude is too large.
};
Status Solve();
// Returns the cost of an assignment with minimal cost.
// This is 0 if the last Solve() didn't return OPTIMAL.
CostValue OptimalCost() const { return optimal_cost_; }
// Returns the right node assigned to the given left node in the
// last solution computed by Solve(). This works only if Solve()
// returned OPTIMAL.
//
// Note: It is possible that there is more than one optimal
// solution. The algorithm is deterministic so it will always return
// the same solution for a given problem. There is no such guarantee
// from one code version to the next, but the code does not change
// often.
NodeIndex RightMate(NodeIndex left_node) const {
return arc_head_[assignment_arcs_[left_node]];
}
// Returns the cost of the arc used for "left_node"'s assignment.
// This works only if Solve() returned OPTIMAL.
CostValue AssignmentCost(NodeIndex left_node) const {
return arc_cost_[assignment_arcs_[left_node]];
}
private:
NodeIndex num_nodes_;
std::vector<NodeIndex> arc_tail_;
std::vector<NodeIndex> arc_head_;
std::vector<CostValue> arc_cost_;
std::vector<ArcIndex> assignment_arcs_;
CostValue optimal_cost_;
DISALLOW_COPY_AND_ASSIGN(SimpleLinearSumAssignment);
};
} // namespace operations_research
#endif // OR_TOOLS_GRAPH_ASSIGNMENT_H_