forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
connected_components.h
360 lines (324 loc) · 14.7 KB
/
connected_components.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Finds the connected components in an undirected graph:
// https://en.wikipedia.org/wiki/Connected_component_(graph_theory)
//
// If you have a fixed graph where the node are dense integers, use
// GetConnectedComponents(): it's very fast and uses little memory.
//
// If you have a more dynamic scenario where you want to incrementally
// add nodes or edges and query the connectivity between them, use the
// [Dense]ConnectedComponentsFinder class, which uses the union-find algorithm
// aka disjoint sets: https://en.wikipedia.org/wiki/Disjoint-set_data_structure.
#ifndef UTIL_GRAPH_CONNECTED_COMPONENTS_H_
#define UTIL_GRAPH_CONNECTED_COMPONENTS_H_
#include <functional>
#include <map>
#include <memory>
#include <set>
#include <type_traits>
#include <vector>
#include "absl/container/flat_hash_map.h"
#include "absl/container/flat_hash_set.h"
#include "absl/hash/hash.h"
#include "absl/meta/type_traits.h"
#include "ortools/base/logging.h"
#include "ortools/base/map_util.h"
#include "ortools/base/ptr_util.h"
namespace util {
// Generic version of GetConnectedComponents() (see below) that supports other
// integer types, e.g. int64_t for huge graphs with more than 2^31 nodes.
template <class UndirectedGraph, class NodeType>
std::vector<NodeType> GetConnectedComponentsTpl(NodeType num_nodes,
const UndirectedGraph& graph);
// Finds the connected components of the graph, using BFS internally.
// Works on any *undirected* graph class whose nodes are dense integers and that
// supports the [] operator for adjacency lists: graph[x] must be an integer
// container listing the nodes that are adjacent to node #x.
// Example: std::vector<std::vector<int>>.
//
// "Undirected" means that for all y in graph[x], x is in graph[y].
//
// Returns the mapping from node to component index. The component indices are
// deterministic: Component #0 will be the one that has node #0, component #1
// the one that has the lowest-index node that isn't in component #0, and so on.
//
// Example on the following 6-node graph: 5--3--0--1 2--4
// vector<vector<int>> graph = {{1, 3}, {0}, {4}, {0, 5}, {2}, {3}};
// GetConnectedComponents(graph); // returns [0, 0, 1, 0, 1, 0].
template <class UndirectedGraph>
std::vector<int> GetConnectedComponents(int num_nodes,
const UndirectedGraph& graph) {
return GetConnectedComponentsTpl(num_nodes, graph);
}
} // namespace util
// NOTE(user): The rest of the functions below should also be in namespace
// util, but for historical reasons it hasn't been done yet.
// A connected components finder that only works on dense ints.
class DenseConnectedComponentsFinder {
public:
DenseConnectedComponentsFinder() {}
// We support copy and move construction.
DenseConnectedComponentsFinder(const DenseConnectedComponentsFinder&) =
default;
DenseConnectedComponentsFinder& operator=(
const DenseConnectedComponentsFinder&) = default;
DenseConnectedComponentsFinder(DenseConnectedComponentsFinder&&) = default;
DenseConnectedComponentsFinder& operator=(DenseConnectedComponentsFinder&&) =
default;
// The main API is the same as ConnectedComponentsFinder (below): see the
// homonymous functions there.
bool AddEdge(int node1, int node2);
bool Connected(int node1, int node2);
int GetSize(int node);
int GetNumberOfComponents() const { return num_components_; }
int GetNumberOfNodes() const { return parent_.size(); }
// Gets the current set of root nodes in sorted order. Runs in amortized
// O(#components) time.
const std::vector<int>& GetComponentRoots();
// Sets the number of nodes in the graph. The graph can only grow: this
// dies if "num_nodes" is lower or equal to any of the values ever given
// to AddEdge(), or lower than a previous value given to SetNumberOfNodes().
// You need this if there are nodes that don't have any edges.
void SetNumberOfNodes(int num_nodes);
// Returns the root of the set for the given node. node must be in
// [0;GetNumberOfNodes()-1].
// Non-const because it does path compression internally.
int FindRoot(int node);
// Returns the same as GetConnectedComponents().
std::vector<int> GetComponentIds();
private:
// parent[i] is the id of an ancestor for node i. A node is a root iff
// parent[i] == i.
std::vector<int> parent_;
// If i is a root, component_size_[i] is the number of elements in the
// component. If i is not a root, component_size_[i] is meaningless.
std::vector<int> component_size_;
// rank[i] is the depth of the tree.
std::vector<int> rank_;
// Number of connected components.
int num_components_ = 0;
// The current roots. This is maintained lazily by GetComponentRoots().
std::vector<int> roots_;
// The number of nodes that existed the last time GetComponentRoots() was
// called.
int num_nodes_at_last_get_roots_call_ = 0;
};
namespace internal {
// A helper to deduce the type of map to use depending on whether CompareOrHashT
// is a comparator or a hasher (prefer the latter).
template <typename T, typename CompareOrHashT, typename Eq>
struct ConnectedComponentsTypeHelper {
// SFINAE trait to detect hash functors and select unordered containers if so,
// and ordered containers otherwise (= by default).
template <typename U, typename V, typename E = void>
struct SelectContainer {
using Set = std::set<T, CompareOrHashT>;
using Map = std::map<T, int, CompareOrHashT>;
};
// Specialization for when U is a hash functor and Eq is void (no custom
// equality).
// The expression inside decltype is basically saying that "H(x)" is
// well-formed, where H is an instance of U and x is an instance of T, and is
// a value of integral type. That is, we are "duck-typing" on whether U looks
// like a hash functor.
template <typename U, typename V>
struct SelectContainer<
U, V,
absl::enable_if_t<std::is_integral<decltype(std::declval<const U&>()(
std::declval<const T&>()))>::value &&
std::is_same_v<V, void>>> {
using Set = absl::flat_hash_set<T, CompareOrHashT>;
using Map = absl::flat_hash_map<T, int, CompareOrHashT>;
};
// Specialization for when U is a hash functor and Eq is provided (not void).
template <typename U, typename V>
struct SelectContainer<
U, V,
absl::enable_if_t<std::is_integral<decltype(std::declval<const U&>()(
std::declval<const T&>()))>::value &&
!std::is_same_v<V, void>>> {
using Set = absl::flat_hash_set<T, CompareOrHashT, Eq>;
using Map = absl::flat_hash_map<T, int, CompareOrHashT, Eq>;
};
using Set = typename SelectContainer<CompareOrHashT, Eq>::Set;
using Map = typename SelectContainer<CompareOrHashT, Eq>::Map;
};
} // namespace internal
// Usage:
// ConnectedComponentsFinder<MyNodeType> cc;
// cc.AddNode(node1);
// cc.AddNode(node2);
// cc.AddEdge(node1, node2);
// ... repeating, adding nodes and edges as needed. Adding an edge
// will automatically also add the two nodes at its ends, if they
// haven't already been added.
// vector<set<MyNodeType> > components;
// cc.FindConnectedComponents(&components);
// Each entry in components now contains all the nodes in a single
// connected component.
//
// Protocol buffers can be used as the node type. Equality and hash functions
// for protocol buffers can be found in ortools/base/message_hasher.h.
//
// Usage with flat_hash_set:
// using ConnectedComponentType = flat_hash_set<MyNodeType>;
// ConnectedComponentsFinder<ConnectedComponentType::key_type,
// ConnectedComponentType::hasher,
// ConnectedComponentType::key_equal>
// cc;
// ...
// vector<ConnectedComponentType> components;
// cc.FindConnectedComponents(&components);
//
// If you want to, you can continue adding nodes and edges after calling
// FindConnectedComponents, then call it again later.
//
// If your node type isn't STL-friendly, then you can use pointers to
// it instead:
// ConnectedComponentsFinder<MySTLUnfriendlyNodeType*> cc;
// cc.AddNode(&node1);
// ... and so on...
// Of course, in this usage, the connected components finder retains
// these pointers through its lifetime (though it doesn't dereference them).
template <typename T, typename CompareOrHashT = std::less<T>,
typename Eq = void>
class ConnectedComponentsFinder {
public:
using Set =
typename internal::ConnectedComponentsTypeHelper<T, CompareOrHashT,
Eq>::Set;
// Constructs a connected components finder.
ConnectedComponentsFinder() {}
ConnectedComponentsFinder(const ConnectedComponentsFinder&) = delete;
ConnectedComponentsFinder& operator=(const ConnectedComponentsFinder&) =
delete;
// Adds a node in the graph. It is OK to add the same node more than
// once; additions after the first have no effect.
void AddNode(T node) { LookupOrInsertNode<true>(node); }
// Adds an edge in the graph. Also adds both endpoint nodes as necessary.
// It is not an error to add the same edge twice. Self-edges are OK too.
// Returns true if the two nodes are newly connected, and false if they were
// already connected.
bool AddEdge(T node1, T node2) {
return delegate_.AddEdge(LookupOrInsertNode<false>(node1),
LookupOrInsertNode<false>(node2));
}
// Returns true iff both nodes are in the same connected component.
// Returns false if either node has not been already added with AddNode.
bool Connected(T node1, T node2) {
return delegate_.Connected(gtl::FindWithDefault(index_, node1, -1),
gtl::FindWithDefault(index_, node2, -1));
}
// Finds the connected component containing a node, and returns the
// total number of nodes in that component. Returns zero iff the
// node has not been already added with AddNode.
int GetSize(T node) {
return delegate_.GetSize(gtl::FindWithDefault(index_, node, -1));
}
// Finds all the connected components and assigns them to components.
// Components are ordered in the same way nodes were added, i.e. if node 'b'
// was added before node 'c', then either:
// - 'c' belongs to the same component as a node 'a' added before 'b', or
// - the component for 'c' comes after the one for 'b'.
// There are two versions:
// - The first one returns the result, and stores each component in a vector.
// This is the preferred version.
// - The second one populates the result, and stores each component in a set.
std::vector<std::vector<T>> FindConnectedComponents() {
const auto component_ids = delegate_.GetComponentIds();
std::vector<std::vector<T>> components(delegate_.GetNumberOfComponents());
for (const auto& elem_id : index_) {
components[component_ids[elem_id.second]].push_back(elem_id.first);
}
return components;
}
void FindConnectedComponents(std::vector<Set>* components) {
const auto component_ids = delegate_.GetComponentIds();
components->clear();
components->resize(delegate_.GetNumberOfComponents());
for (const auto& elem_id : index_) {
components->at(component_ids[elem_id.second]).insert(elem_id.first);
}
}
// Returns the current number of connected components.
// This number can change as the new nodes or edges are added.
int GetNumberOfComponents() const {
return delegate_.GetNumberOfComponents();
}
// Returns the current number of added distinct nodes.
// This includes nodes added explicitly via the calls to AddNode() method
// and implicitly via the calls to AddEdge() method.
// Nodes that were added several times only count once.
int GetNumberOfNodes() const { return delegate_.GetNumberOfNodes(); }
private:
// Returns the index for the given node. If the node does not exist and
// update_delegate is true, explicitly add the node to the delegate.
template <bool update_delegate>
int LookupOrInsertNode(T node) {
const auto result = index_.emplace(node, index_.size());
const int node_id = result.first->second;
if (update_delegate && result.second) {
// A new index was created.
delegate_.SetNumberOfNodes(node_id + 1);
}
return node_id;
}
DenseConnectedComponentsFinder delegate_;
typename internal::ConnectedComponentsTypeHelper<T, CompareOrHashT, Eq>::Map
index_;
};
// =============================================================================
// Implementations of the method templates
// =============================================================================
namespace util {
template <class UndirectedGraph, typename NodeType>
std::vector<NodeType> GetConnectedComponentsTpl(NodeType num_nodes,
const UndirectedGraph& graph) {
// We use 'num_nodes' as special component id meaning 'unknown', because
// it's of the right type, and -1 is tricky to use with unsigned ints.
std::vector<NodeType> component_of_node(num_nodes, num_nodes);
std::vector<NodeType> bfs_queue;
NodeType num_components = 0;
for (NodeType src = 0; src < num_nodes; ++src) {
if (component_of_node[src] != num_nodes) continue;
bfs_queue.push_back(src);
component_of_node[src] = num_components;
for (size_t num_visited = 0; num_visited < bfs_queue.size();
++num_visited) {
const NodeType node = bfs_queue[num_visited];
for (const NodeType neighbor : graph[node]) {
if (component_of_node[neighbor] != num_nodes) continue;
component_of_node[neighbor] = num_components;
bfs_queue.push_back(neighbor);
}
}
++num_components;
bfs_queue.clear();
}
return component_of_node;
}
} // namespace util
#endif // UTIL_GRAPH_CONNECTED_COMPONENTS_H_