forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dijkstra.cc
169 lines (154 loc) · 5.22 KB
/
dijkstra.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cstdint>
#include <functional>
#include <limits>
#include <memory>
#include <set>
#include <utility>
#include <vector>
#include "absl/container/flat_hash_set.h"
#include "ortools/base/adjustable_priority_queue.h"
#include "ortools/base/integral_types.h"
#include "ortools/graph/shortestpaths.h"
namespace operations_research {
namespace {
// Priority queue element
class Element {
public:
bool operator<(const Element& other) const {
return distance_ != other.distance_ ? distance_ > other.distance_
: node_ > other.node_;
}
void SetHeapIndex(int h) { heap_index_ = h; }
int GetHeapIndex() const { return heap_index_; }
void set_distance(int64_t distance) { distance_ = distance; }
int64_t distance() const { return distance_; }
void set_node(int node) { node_ = node; }
int node() const { return node_; }
private:
int64_t distance_ = 0;
int heap_index_ = -1;
int node_ = -1;
};
} // namespace
template <class S>
class DijkstraSP {
public:
static constexpr int64_t kInfinity = std::numeric_limits<int64_t>::max() / 2;
DijkstraSP(int node_count, int start_node,
std::function<int64_t(int, int)> graph,
int64_t disconnected_distance)
: node_count_(node_count),
start_node_(start_node),
graph_(std::move(graph)),
disconnected_distance_(disconnected_distance),
predecessor_(new int[node_count]),
elements_(node_count) {}
bool ShortestPath(int end_node, std::vector<int>* nodes) {
Initialize();
bool found = false;
while (!frontier_.IsEmpty()) {
int64_t distance;
int node = SelectClosestNode(&distance);
if (distance == kInfinity) {
found = false;
break;
} else if (node == end_node) {
found = true;
break;
}
Update(node);
}
if (found) {
FindPath(end_node, nodes);
}
return found;
}
private:
void Initialize() {
for (int i = 0; i < node_count_; i++) {
elements_[i].set_node(i);
if (i == start_node_) {
predecessor_[i] = -1;
elements_[i].set_distance(0);
frontier_.Add(&elements_[i]);
} else {
elements_[i].set_distance(kInfinity);
predecessor_[i] = start_node_;
not_visited_.insert(i);
}
}
}
int SelectClosestNode(int64_t* distance) {
const int node = frontier_.Top()->node();
*distance = frontier_.Top()->distance();
frontier_.Pop();
not_visited_.erase(node);
added_to_the_frontier_.erase(node);
return node;
}
void Update(int node) {
for (const auto& other_node : not_visited_) {
const int64_t graph_node_i = graph_(node, other_node);
if (graph_node_i != disconnected_distance_) {
if (added_to_the_frontier_.find(other_node) ==
added_to_the_frontier_.end()) {
frontier_.Add(&elements_[other_node]);
added_to_the_frontier_.insert(other_node);
}
const int64_t other_distance =
elements_[node].distance() + graph_node_i;
if (elements_[other_node].distance() > other_distance) {
elements_[other_node].set_distance(other_distance);
frontier_.NoteChangedPriority(&elements_[other_node]);
predecessor_[other_node] = node;
}
}
}
}
void FindPath(int dest, std::vector<int>* nodes) {
int j = dest;
nodes->push_back(j);
while (predecessor_[j] != -1) {
nodes->push_back(predecessor_[j]);
j = predecessor_[j];
}
}
const int node_count_;
const int start_node_;
std::function<int64_t(int, int)> graph_;
const int64_t disconnected_distance_;
std::unique_ptr<int[]> predecessor_;
AdjustablePriorityQueue<Element> frontier_;
std::vector<Element> elements_;
S not_visited_;
S added_to_the_frontier_;
};
bool DijkstraShortestPath(int node_count, int start_node, int end_node,
std::function<int64_t(int, int)> graph,
int64_t disconnected_distance,
std::vector<int>* nodes) {
DijkstraSP<absl::flat_hash_set<int>> bf(
node_count, start_node, std::move(graph), disconnected_distance);
return bf.ShortestPath(end_node, nodes);
}
bool StableDijkstraShortestPath(int node_count, int start_node, int end_node,
std::function<int64_t(int, int)> graph,
int64_t disconnected_distance,
std::vector<int>* nodes) {
DijkstraSP<std::set<int>> bf(node_count, start_node, std::move(graph),
disconnected_distance);
return bf.ShortestPath(end_node, nodes);
}
} // namespace operations_research