forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eulerian_path.h
181 lines (167 loc) · 6.39 KB
/
eulerian_path.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Utility to build Eulerian paths and tours on a graph. For more information,
// see https://en.wikipedia.org/wiki/Eulerian_path.
// As of 10/2015, only undirected graphs are supported.
//
// Usage:
// - Building an Eulerian tour on a ReverseArcListGraph:
// ReverseArcListGraph<int, int> graph;
// // Fill graph
// std::vector<int> tour = BuildEulerianTour(graph);
//
// - Building an Eulerian path on a ReverseArcListGraph:
// ReverseArcListGraph<int, int> graph;
// // Fill graph
// std::vector<int> tour = BuildEulerianPath(graph);
//
#ifndef OR_TOOLS_GRAPH_EULERIAN_PATH_H_
#define OR_TOOLS_GRAPH_EULERIAN_PATH_H_
#include <vector>
#include "ortools/base/logging.h"
namespace operations_research {
namespace internal {
template <typename Graph>
bool GraphIsConnected(const Graph& graph);
} // namespace internal
// Returns true if a graph is Eulerian, aka all its nodes are of even degree.
template <typename Graph>
bool IsEulerianGraph(const Graph& graph, bool assume_connectivity = true) {
typedef typename Graph::NodeIndex NodeIndex;
for (const NodeIndex node : graph.AllNodes()) {
if ((graph.OutDegree(node) + graph.InDegree(node)) % 2 != 0) {
return false;
}
}
return assume_connectivity || internal::GraphIsConnected(graph);
}
// Returns true if a graph is Semi-Eulerian, aka at most two of its nodes are of
// odd degree.
// odd_nodes is filled with odd nodes of the graph.
template <typename NodeIndex, typename Graph>
bool IsSemiEulerianGraph(const Graph& graph, std::vector<NodeIndex>* odd_nodes,
bool assume_connectivity = true) {
CHECK(odd_nodes != nullptr);
for (const NodeIndex node : graph.AllNodes()) {
const int degree = graph.OutDegree(node) + graph.InDegree(node);
if (degree % 2 != 0) {
odd_nodes->push_back(node);
}
}
if (odd_nodes->size() > 2) return false;
return assume_connectivity || internal::GraphIsConnected(graph);
}
// Builds an Eulerian path/trail on an undirected graph starting from node root.
// Supposes the graph is connected and is eulerian or semi-eulerian.
// This is an implementation of Hierholzer's algorithm.
// If m is the number of edges in the graph and n the number of nodes, time
// and memory complexity is O(n + m).
template <typename NodeIndex, typename Graph>
std::vector<NodeIndex> BuildEulerianPathFromNode(const Graph& graph,
NodeIndex root) {
typedef typename Graph::ArcIndex ArcIndex;
std::vector<bool> unvisited_edges(graph.num_arcs(), true);
std::vector<NodeIndex> tour;
if (graph.IsNodeValid(root)) {
std::vector<NodeIndex> tour_stack = {root};
std::vector<ArcIndex> active_arcs(graph.num_nodes());
for (const NodeIndex node : graph.AllNodes()) {
active_arcs[node] = *(graph.OutgoingOrOppositeIncomingArcs(node)).begin();
}
while (!tour_stack.empty()) {
const NodeIndex node = tour_stack.back();
bool has_unvisited_edges = false;
for (const ArcIndex arc :
graph.OutgoingOrOppositeIncomingArcsStartingFrom(
node, active_arcs[node])) {
const ArcIndex edge = arc < 0 ? graph.OppositeArc(arc) : arc;
if (unvisited_edges[edge]) {
has_unvisited_edges = true;
active_arcs[node] = arc;
tour_stack.push_back(graph.Head(arc));
unvisited_edges[edge] = false;
break;
}
}
if (!has_unvisited_edges) {
tour.push_back(node);
tour_stack.pop_back();
}
}
}
return tour;
}
// Builds an Eulerian tour/circuit/cycle starting and ending at node root on an
// undirected graph.
// This function works only on Reverse graphs
// (cf. ortools/graph/graph.h).
// Returns an empty tour if either root is invalid or if a tour cannot be built.
template <typename NodeIndex, typename Graph>
std::vector<NodeIndex> BuildEulerianTourFromNode(
const Graph& graph, NodeIndex root, bool assume_connectivity = true) {
std::vector<NodeIndex> tour;
if (IsEulerianGraph(graph, assume_connectivity)) {
tour = BuildEulerianPathFromNode(graph, root);
}
return tour;
}
// Same as above but without specifying a start/end root node (node 0 is taken
// as default root).
template <typename Graph>
std::vector<typename Graph::NodeIndex> BuildEulerianTour(
const Graph& graph, bool assume_connectivity = true) {
return BuildEulerianTourFromNode(graph, 0, assume_connectivity);
}
// Builds an Eulerian path/trail on an undirected graph.
// This function works only on Reverse graphs
// (cf. ortools/graph/graph.h).
// Returns an empty tour if a tour cannot be built.
template <typename Graph>
std::vector<typename Graph::NodeIndex> BuildEulerianPath(
const Graph& graph, bool assume_connectivity = true) {
typedef typename Graph::NodeIndex NodeIndex;
std::vector<NodeIndex> path;
std::vector<NodeIndex> roots;
if (IsSemiEulerianGraph(graph, &roots, assume_connectivity)) {
const NodeIndex root = roots.empty() ? 0 : roots.back();
path = BuildEulerianPathFromNode(graph, root);
}
return path;
}
namespace internal {
template <typename Graph>
bool GraphIsConnected(const Graph& graph) {
typedef typename Graph::NodeIndex NodeIndex;
const NodeIndex n = graph.num_nodes();
if (n <= 1) return true;
// We use iterative DFS, which is probably the fastest.
NodeIndex num_visited = 1;
std::vector<NodeIndex> stack = {0};
std::vector<bool> visited(n, false);
while (!stack.empty()) {
const NodeIndex node = stack.back();
stack.pop_back();
for (auto arc : graph.OutgoingOrOppositeIncomingArcs(node)) {
const NodeIndex neigh = graph.Head(arc);
if (!visited[neigh]) {
visited[neigh] = true;
stack.push_back(neigh);
if (++num_visited == n) return true;
}
}
}
return false;
}
} // namespace internal
} // namespace operations_research
#endif // OR_TOOLS_GRAPH_EULERIAN_PATH_H_