forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
perfect_matching.cc
1284 lines (1127 loc) · 44.1 KB
/
perfect_matching.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/graph/perfect_matching.h"
#include <algorithm>
#include <cstdint>
#include <limits>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "absl/memory/memory.h"
#include "ortools/util/saturated_arithmetic.h"
namespace operations_research {
void MinCostPerfectMatching::Reset(int num_nodes) {
graph_ = std::make_unique<BlossomGraph>(num_nodes);
optimal_cost_ = 0;
matches_.assign(num_nodes, -1);
}
void MinCostPerfectMatching::AddEdgeWithCost(int tail, int head, int64_t cost) {
CHECK_GE(cost, 0) << "Not supported for now, just shift your costs.";
if (tail == head) {
VLOG(1) << "Ignoring self-arc: " << tail << " <-> " << head
<< " cost: " << cost;
return;
}
maximum_edge_cost_ = std::max(maximum_edge_cost_, cost);
graph_->AddEdge(BlossomGraph::NodeIndex(tail), BlossomGraph::NodeIndex(head),
BlossomGraph::CostValue(cost));
}
MinCostPerfectMatching::Status MinCostPerfectMatching::Solve() {
optimal_solution_found_ = false;
// We want all dual and all slack value to never overflow. After Initialize()
// they are both bounded by the 2 * maximum cost. And we track an upper bound
// on these quantities. The factor two is because of the re-scaling we do
// internally since all our dual values are actually multiple of 1/2.
//
// Note that since the whole code in BlossomGraph assumes that dual/slack have
// a magnitude that is always lower than kMaxCostValue it is important to use
// it here since there is no reason it cannot be smaller than kint64max.
//
// TODO(user): Improve the overflow detection if needed. The current one seems
// ok though.
int64_t overflow_detection = CapAdd(maximum_edge_cost_, maximum_edge_cost_);
if (overflow_detection >= BlossomGraph::kMaxCostValue) {
return Status::INTEGER_OVERFLOW;
}
const int num_nodes = matches_.size();
if (!graph_->Initialize()) return Status::INFEASIBLE;
VLOG(2) << graph_->DebugString();
VLOG(1) << "num_unmatched: " << num_nodes - graph_->NumMatched()
<< " dual_objective: " << graph_->DualObjective();
while (graph_->NumMatched() != num_nodes) {
graph_->PrimalUpdates();
if (DEBUG_MODE) {
graph_->DebugCheckNoPossiblePrimalUpdates();
}
VLOG(1) << "num_unmatched: " << num_nodes - graph_->NumMatched()
<< " dual_objective: " << graph_->DualObjective();
if (graph_->NumMatched() == num_nodes) break;
const BlossomGraph::CostValue delta =
graph_->ComputeMaxCommonTreeDualDeltaAndResetPrimalEdgeQueue();
overflow_detection = CapAdd(overflow_detection, std::abs(delta.value()));
if (overflow_detection >= BlossomGraph::kMaxCostValue) {
return Status::INTEGER_OVERFLOW;
}
if (delta == 0) break; // Infeasible!
graph_->UpdateAllTrees(delta);
}
VLOG(1) << "End: " << graph_->NumMatched() << " / " << num_nodes;
graph_->DisplayStats();
if (graph_->NumMatched() < num_nodes) {
return Status::INFEASIBLE;
}
VLOG(2) << graph_->DebugString();
CHECK(graph_->DebugDualsAreFeasible());
// TODO(user): Maybe there is a faster/better way to recover the mapping
// in the presence of blossoms.
graph_->ExpandAllBlossoms();
for (int i = 0; i < num_nodes; ++i) {
matches_[i] = graph_->Match(BlossomGraph::NodeIndex(i)).value();
}
optimal_solution_found_ = true;
optimal_cost_ = graph_->DualObjective().value();
if (optimal_cost_ == std::numeric_limits<int64_t>::max())
return Status::COST_OVERFLOW;
return Status::OPTIMAL;
}
using NodeIndex = BlossomGraph::NodeIndex;
using CostValue = BlossomGraph::CostValue;
const BlossomGraph::NodeIndex BlossomGraph::kNoNodeIndex =
BlossomGraph::NodeIndex(-1);
const BlossomGraph::EdgeIndex BlossomGraph::kNoEdgeIndex =
BlossomGraph::EdgeIndex(-1);
const BlossomGraph::CostValue BlossomGraph::kMaxCostValue =
BlossomGraph::CostValue(std::numeric_limits<int64_t>::max());
BlossomGraph::BlossomGraph(int num_nodes) {
graph_.resize(num_nodes);
nodes_.reserve(num_nodes);
root_blossom_node_.resize(num_nodes);
for (NodeIndex n(0); n < num_nodes; ++n) {
root_blossom_node_[n] = n;
nodes_.push_back(Node(n));
}
}
void BlossomGraph::AddEdge(NodeIndex tail, NodeIndex head, CostValue cost) {
DCHECK_GE(tail, 0);
DCHECK_LT(tail, nodes_.size());
DCHECK_GE(head, 0);
DCHECK_LT(head, nodes_.size());
DCHECK_GE(cost, 0);
DCHECK(!is_initialized_);
const EdgeIndex index(edges_.size());
edges_.push_back(Edge(tail, head, cost));
graph_[tail].push_back(index);
graph_[head].push_back(index);
}
// TODO(user): Code the more advanced "Fractional matching initialization"
// heuristic.
//
// TODO(user): Add a preprocessing step that performs the 'forced' matches?
bool BlossomGraph::Initialize() {
CHECK(!is_initialized_);
is_initialized_ = true;
for (NodeIndex n(0); n < nodes_.size(); ++n) {
if (graph_[n].empty()) return false; // INFEASIBLE.
CostValue min_cost = kMaxCostValue;
// Initialize the dual of each nodes to min_cost / 2.
//
// TODO(user): We might be able to do better for odd min_cost, but then
// we might need to scale by 4? think about it.
for (const EdgeIndex e : graph_[n]) {
min_cost = std::min(min_cost, edges_[e].pseudo_slack);
}
DCHECK_NE(min_cost, kMaxCostValue);
nodes_[n].pseudo_dual = min_cost / 2;
// Starts with all nodes as tree roots.
nodes_[n].type = 1;
}
// Update the slack of each edges now that nodes might have non-zero duals.
// Note that we made sure that all updated slacks are non-negative.
for (EdgeIndex e(0); e < edges_.size(); ++e) {
Edge& mutable_edge = edges_[e];
mutable_edge.pseudo_slack -= nodes_[mutable_edge.tail].pseudo_dual +
nodes_[mutable_edge.head].pseudo_dual;
DCHECK_GE(mutable_edge.pseudo_slack, 0);
}
for (NodeIndex n(0); n < nodes_.size(); ++n) {
if (NodeIsMatched(n)) continue;
// After this greedy update, there will be at least an edge with a
// slack of zero.
CostValue min_slack = kMaxCostValue;
for (const EdgeIndex e : graph_[n]) {
min_slack = std::min(min_slack, edges_[e].pseudo_slack);
}
DCHECK_NE(min_slack, kMaxCostValue);
if (min_slack > 0) {
nodes_[n].pseudo_dual += min_slack;
for (const EdgeIndex e : graph_[n]) {
edges_[e].pseudo_slack -= min_slack;
}
DebugUpdateNodeDual(n, min_slack);
}
// Match this node if possible.
//
// TODO(user): Optimize by merging this loop with the one above?
for (const EdgeIndex e : graph_[n]) {
const Edge& edge = edges_[e];
if (edge.pseudo_slack != 0) continue;
if (!NodeIsMatched(edge.OtherEnd(n))) {
nodes_[edge.tail].type = 0;
nodes_[edge.tail].match = edge.head;
nodes_[edge.head].type = 0;
nodes_[edge.head].match = edge.tail;
break;
}
}
}
// Initialize unmatched_nodes_.
for (NodeIndex n(0); n < nodes_.size(); ++n) {
if (NodeIsMatched(n)) continue;
unmatched_nodes_.push_back(n);
}
// Scale everything by 2 and update the dual cost. Note that we made sure that
// there cannot be an integer overflow at the beginning of Solve().
//
// This scaling allows to only have integer weights during the algorithm
// because the slack of [+] -- [+] edges will always stay even.
//
// TODO(user): Reduce the number of loops we do in the initialization. We
// could likely just scale the edge cost as we fill them.
for (NodeIndex n(0); n < nodes_.size(); ++n) {
DCHECK_LE(nodes_[n].pseudo_dual, kMaxCostValue / 2);
nodes_[n].pseudo_dual *= 2;
AddToDualObjective(nodes_[n].pseudo_dual);
#ifndef NDEBUG
nodes_[n].dual = nodes_[n].pseudo_dual;
#endif
}
for (EdgeIndex e(0); e < edges_.size(); ++e) {
DCHECK_LE(edges_[e].pseudo_slack, kMaxCostValue / 2);
edges_[e].pseudo_slack *= 2;
#ifndef NDEBUG
edges_[e].slack = edges_[e].pseudo_slack;
#endif
}
// Initialize the edge priority queues and the primal update queue.
// We only need to do that if we have unmatched nodes.
if (!unmatched_nodes_.empty()) {
primal_update_edge_queue_.clear();
for (EdgeIndex e(0); e < edges_.size(); ++e) {
Edge& edge = edges_[e];
const bool tail_is_plus = nodes_[edge.tail].IsPlus();
const bool head_is_plus = nodes_[edge.head].IsPlus();
if (tail_is_plus && head_is_plus) {
plus_plus_pq_.Add(&edge);
if (edge.pseudo_slack == 0) primal_update_edge_queue_.push_back(e);
} else if (tail_is_plus || head_is_plus) {
plus_free_pq_.Add(&edge);
if (edge.pseudo_slack == 0) primal_update_edge_queue_.push_back(e);
}
}
}
return true;
}
CostValue BlossomGraph::ComputeMaxCommonTreeDualDeltaAndResetPrimalEdgeQueue() {
// TODO(user): Avoid this linear loop.
CostValue best_update = kMaxCostValue;
for (NodeIndex n(0); n < nodes_.size(); ++n) {
const Node& node = nodes_[n];
if (node.IsBlossom() && node.IsMinus()) {
best_update = std::min(best_update, Dual(node));
}
}
// This code only works because all tree_dual_delta are the same.
CHECK(!unmatched_nodes_.empty());
const CostValue tree_delta = nodes_[unmatched_nodes_.front()].tree_dual_delta;
CostValue plus_plus_slack = kMaxCostValue;
if (!plus_plus_pq_.IsEmpty()) {
DCHECK_EQ(plus_plus_pq_.Top()->pseudo_slack % 2, 0) << "Non integer bound!";
plus_plus_slack = plus_plus_pq_.Top()->pseudo_slack / 2 - tree_delta;
best_update = std::min(best_update, plus_plus_slack);
}
CostValue plus_free_slack = kMaxCostValue;
if (!plus_free_pq_.IsEmpty()) {
plus_free_slack = plus_free_pq_.Top()->pseudo_slack - tree_delta;
best_update = std::min(best_update, plus_free_slack);
}
// This means infeasible, and returning zero will abort the search.
if (best_update == kMaxCostValue) return CostValue(0);
// Initialize primal_update_edge_queue_ with all the edges that will have a
// slack of zero once we apply the update.
//
// NOTE(user): If we want more "determinism" and be independent on the PQ
// algorithm, we could std::sort() the primal_update_edge_queue_ here.
primal_update_edge_queue_.clear();
if (plus_plus_slack == best_update) {
plus_plus_pq_.AllTop(&tmp_all_tops_);
for (const Edge* pt : tmp_all_tops_) {
primal_update_edge_queue_.push_back(EdgeIndex(pt - &edges_.front()));
}
}
if (plus_free_slack == best_update) {
plus_free_pq_.AllTop(&tmp_all_tops_);
for (const Edge* pt : tmp_all_tops_) {
primal_update_edge_queue_.push_back(EdgeIndex(pt - &edges_.front()));
}
}
return best_update;
}
void BlossomGraph::UpdateAllTrees(CostValue delta) {
++num_dual_updates_;
// Reminder: the tree roots are exactly the unmatched nodes.
CHECK_GE(delta, 0);
for (const NodeIndex n : unmatched_nodes_) {
CHECK(!NodeIsMatched(n));
AddToDualObjective(delta);
nodes_[n].tree_dual_delta += delta;
}
if (DEBUG_MODE) {
for (NodeIndex n(0); n < nodes_.size(); ++n) {
const Node& node = nodes_[n];
if (node.IsPlus()) DebugUpdateNodeDual(n, delta);
if (node.IsMinus()) DebugUpdateNodeDual(n, -delta);
}
}
}
bool BlossomGraph::NodeIsMatched(NodeIndex n) const {
// An unmatched node must be a tree root.
const Node& node = nodes_[n];
CHECK(node.match != n || (node.root == n && node.IsPlus()));
return node.match != n;
}
NodeIndex BlossomGraph::Match(NodeIndex n) const {
const Node& node = nodes_[n];
if (DEBUG_MODE) {
if (node.IsMinus()) CHECK_EQ(node.parent, node.match);
if (node.IsPlus()) CHECK_EQ(n, node.match);
}
return node.match;
}
// Meant to only be used in DEBUG to make sure our queue in PrimalUpdates()
// do not miss any potential edges.
void BlossomGraph::DebugCheckNoPossiblePrimalUpdates() {
for (EdgeIndex e(0); e < edges_.size(); ++e) {
const Edge& edge = edges_[e];
if (Head(edge) == Tail(edge)) continue;
CHECK(!nodes_[Tail(edge)].is_internal);
CHECK(!nodes_[Head(edge)].is_internal);
if (Slack(edge) != 0) continue;
// Make sure tail is a plus node if possible.
NodeIndex tail = Tail(edge);
NodeIndex head = Head(edge);
if (!nodes_[tail].IsPlus()) std::swap(tail, head);
if (!nodes_[tail].IsPlus()) continue;
if (nodes_[head].IsFree()) {
VLOG(2) << DebugString();
LOG(FATAL) << "Possible Grow! " << tail << " " << head;
}
if (nodes_[head].IsPlus()) {
if (nodes_[tail].root == nodes_[head].root) {
LOG(FATAL) << "Possible Shrink!";
} else {
LOG(FATAL) << "Possible augment!";
}
}
}
for (const Node& node : nodes_) {
if (node.IsMinus() && node.IsBlossom() && Dual(node) == 0) {
LOG(FATAL) << "Possible expand!";
}
}
}
void BlossomGraph::PrimalUpdates() {
// Any Grow/Augment/Shrink/Expand operation can add new tight edges that need
// to be explored again.
//
// TODO(user): avoid adding duplicates?
while (true) {
possible_shrink_.clear();
// First, we Grow/Augment as much as possible.
while (!primal_update_edge_queue_.empty()) {
const EdgeIndex e = primal_update_edge_queue_.back();
primal_update_edge_queue_.pop_back();
// Because of the Expand() operation, the edge may have become un-tight
// since it has been inserted in the tight edges queue. It's cheaper to
// detect it here and skip it than it would be to dynamically update the
// queue to only keep actually tight edges at all times.
const Edge& edge = edges_[e];
if (Slack(edge) != 0) continue;
NodeIndex tail = Tail(edge);
NodeIndex head = Head(edge);
if (!nodes_[tail].IsPlus()) std::swap(tail, head);
if (!nodes_[tail].IsPlus()) continue;
if (nodes_[head].IsFree()) {
Grow(e, tail, head);
} else if (nodes_[head].IsPlus()) {
if (nodes_[tail].root != nodes_[head].root) {
Augment(e);
} else {
possible_shrink_.push_back(e);
}
}
}
// Shrink all potential Blossom.
for (const EdgeIndex e : possible_shrink_) {
const Edge& edge = edges_[e];
const NodeIndex tail = Tail(edge);
const NodeIndex head = Head(edge);
const Node& tail_node = nodes_[tail];
const Node& head_node = nodes_[head];
if (tail_node.IsPlus() && head_node.IsPlus() &&
tail_node.root == head_node.root && tail != head) {
Shrink(e);
}
}
// Delay expand if any blossom was created.
if (!primal_update_edge_queue_.empty()) continue;
// Expand Blossom if any.
//
// TODO(user): Avoid doing a O(num_nodes). Also expand all blossom
// recursively? I am not sure it is a good heuristic to expand all possible
// blossom before trying the other operations though.
int num_expands = 0;
for (NodeIndex n(0); n < nodes_.size(); ++n) {
const Node& node = nodes_[n];
if (node.IsMinus() && node.IsBlossom() && Dual(node) == 0) {
++num_expands;
Expand(n);
}
}
if (num_expands == 0) break;
}
}
bool BlossomGraph::DebugDualsAreFeasible() const {
// The slack of all edge must be non-negative.
for (const Edge& edge : edges_) {
if (Slack(edge) < 0) return false;
}
// The dual of all Blossom must be non-negative.
for (const Node& node : nodes_) {
if (node.IsBlossom() && Dual(node) < 0) return false;
}
return true;
}
bool BlossomGraph::DebugEdgeIsTightAndExternal(const Edge& edge) const {
if (Tail(edge) == Head(edge)) return false;
if (nodes_[Tail(edge)].IsInternal()) return false;
if (nodes_[Head(edge)].IsInternal()) return false;
return Slack(edge) == 0;
}
void BlossomGraph::Grow(EdgeIndex e, NodeIndex tail, NodeIndex head) {
++num_grows_;
VLOG(2) << "Grow " << tail << " -> " << head << " === " << Match(head);
DCHECK(DebugEdgeIsTightAndExternal(edges_[e]));
DCHECK(nodes_[tail].IsPlus());
DCHECK(nodes_[head].IsFree());
DCHECK(NodeIsMatched(head));
const NodeIndex root = nodes_[tail].root;
const NodeIndex leaf = Match(head);
Node& head_node = nodes_[head];
head_node.root = root;
head_node.parent = tail;
head_node.type = -1;
// head was free and is now a [-] node.
const CostValue tree_dual = nodes_[root].tree_dual_delta;
head_node.pseudo_dual += tree_dual;
for (const NodeIndex subnode : SubNodes(head)) {
for (const EdgeIndex e : graph_[subnode]) {
Edge& edge = edges_[e];
const NodeIndex other_end = OtherEnd(edge, subnode);
if (other_end == head) continue;
edge.pseudo_slack -= tree_dual;
if (plus_free_pq_.Contains(&edge)) plus_free_pq_.Remove(&edge);
}
}
Node& leaf_node = nodes_[leaf];
leaf_node.root = root;
leaf_node.parent = head;
leaf_node.type = +1;
// leaf was free and is now a [+] node.
leaf_node.pseudo_dual -= tree_dual;
for (const NodeIndex subnode : SubNodes(leaf)) {
for (const EdgeIndex e : graph_[subnode]) {
Edge& edge = edges_[e];
const NodeIndex other_end = OtherEnd(edge, subnode);
if (other_end == leaf) continue;
edge.pseudo_slack += tree_dual;
const Node& other_node = nodes_[other_end];
if (other_node.IsPlus()) {
// The edge switch from [+] -- [0] to [+] -- [+].
DCHECK(plus_free_pq_.Contains(&edge));
DCHECK(!plus_plus_pq_.Contains(&edge));
plus_free_pq_.Remove(&edge);
plus_plus_pq_.Add(&edge);
if (edge.pseudo_slack == 2 * tree_dual) {
DCHECK_EQ(Slack(edge), 0);
primal_update_edge_queue_.push_back(e);
}
} else if (other_node.IsFree()) {
// We have a new [+] -- [0] edge.
DCHECK(!plus_free_pq_.Contains(&edge));
DCHECK(!plus_plus_pq_.Contains(&edge));
plus_free_pq_.Add(&edge);
if (edge.pseudo_slack == tree_dual) {
DCHECK_EQ(Slack(edge), 0);
primal_update_edge_queue_.push_back(e);
}
}
}
}
}
void BlossomGraph::AppendNodePathToRoot(NodeIndex n,
std::vector<NodeIndex>* path) const {
while (true) {
path->push_back(n);
n = nodes_[n].parent;
if (n == path->back()) break;
}
}
void BlossomGraph::Augment(EdgeIndex e) {
++num_augments_;
const Edge& edge = edges_[e];
VLOG(2) << "Augment " << Tail(edge) << " -> " << Head(edge);
DCHECK(DebugEdgeIsTightAndExternal(edge));
DCHECK(nodes_[Tail(edge)].IsPlus());
DCHECK(nodes_[Head(edge)].IsPlus());
const NodeIndex root_a = nodes_[Tail(edge)].root;
const NodeIndex root_b = nodes_[Head(edge)].root;
DCHECK_NE(root_a, root_b);
// Compute the path from root_a to root_b.
std::vector<NodeIndex> node_path;
AppendNodePathToRoot(Tail(edge), &node_path);
std::reverse(node_path.begin(), node_path.end());
AppendNodePathToRoot(Head(edge), &node_path);
// TODO(user): Check all dual/slack same after primal op?
const CostValue delta_a = nodes_[root_a].tree_dual_delta;
const CostValue delta_b = nodes_[root_b].tree_dual_delta;
nodes_[root_a].tree_dual_delta = 0;
nodes_[root_b].tree_dual_delta = 0;
// Make all the nodes from both trees free while keeping the
// current matching.
//
// TODO(user): It seems that we may waste some computation since the part of
// the tree not in the path between roots can lead to the same Grow()
// operations later when one of its node is ratched to a new root.
//
// TODO(user): Reduce this O(num_nodes) complexity. We might be able to
// even do O(num_node_in_path) with lazy updates. Note that this operation
// will only be performed at most num_initial_unmatched_nodes / 2 times
// though.
for (NodeIndex n(0); n < nodes_.size(); ++n) {
Node& node = nodes_[n];
if (node.IsInternal()) continue;
const NodeIndex root = node.root;
if (root != root_a && root != root_b) continue;
const CostValue delta = node.type * (root == root_a ? delta_a : delta_b);
node.pseudo_dual += delta;
for (const NodeIndex subnode : SubNodes(n)) {
for (const EdgeIndex e : graph_[subnode]) {
Edge& edge = edges_[e];
const NodeIndex other_end = OtherEnd(edge, subnode);
if (other_end == n) continue;
edge.pseudo_slack -= delta;
// If the other end is not in one of the two trees, and it is a plus
// node, we add it the plus_free queue. All previous [+]--[0] and
// [+]--[+] edges need to be removed from the queues.
const Node& other_node = nodes_[other_end];
if (other_node.root != root_a && other_node.root != root_b &&
other_node.IsPlus()) {
if (plus_plus_pq_.Contains(&edge)) plus_plus_pq_.Remove(&edge);
DCHECK(!plus_free_pq_.Contains(&edge));
plus_free_pq_.Add(&edge);
if (Slack(edge) == 0) primal_update_edge_queue_.push_back(e);
} else {
if (plus_plus_pq_.Contains(&edge)) plus_plus_pq_.Remove(&edge);
if (plus_free_pq_.Contains(&edge)) plus_free_pq_.Remove(&edge);
}
}
}
node.type = 0;
node.parent = node.root = n;
}
// Change the matching of nodes along node_path.
CHECK_EQ(node_path.size() % 2, 0);
for (int i = 0; i < node_path.size(); i += 2) {
nodes_[node_path[i]].match = node_path[i + 1];
nodes_[node_path[i + 1]].match = node_path[i];
}
// Update unmatched_nodes_.
//
// TODO(user): This could probably be optimized if needed. But we do usually
// iterate a lot more over it than we update it. Note that as long as we use
// the same delta for all trees, this is not even needed.
int new_size = 0;
for (const NodeIndex n : unmatched_nodes_) {
if (!NodeIsMatched(n)) unmatched_nodes_[new_size++] = n;
}
CHECK_EQ(unmatched_nodes_.size(), new_size + 2);
unmatched_nodes_.resize(new_size);
}
int BlossomGraph::GetDepth(NodeIndex n) const {
int depth = 0;
while (true) {
const NodeIndex parent = nodes_[n].parent;
if (parent == n) break;
++depth;
n = parent;
}
return depth;
}
void BlossomGraph::Shrink(EdgeIndex e) {
++num_shrinks_;
const Edge& edge = edges_[e];
DCHECK(DebugEdgeIsTightAndExternal(edge));
DCHECK(nodes_[Tail(edge)].IsPlus());
DCHECK(nodes_[Head(edge)].IsPlus());
DCHECK_EQ(nodes_[Tail(edge)].root, nodes_[Head(edge)].root);
CHECK_NE(Tail(edge), Head(edge)) << e;
// Find lowest common ancestor and the two node paths to reach it. Note that
// we do not add it to the paths.
NodeIndex lca_index = kNoNodeIndex;
std::vector<NodeIndex> tail_path;
std::vector<NodeIndex> head_path;
{
NodeIndex tail = Tail(edge);
NodeIndex head = Head(edge);
int tail_depth = GetDepth(tail);
int head_depth = GetDepth(head);
if (tail_depth > head_depth) {
std::swap(tail, head);
std::swap(tail_depth, head_depth);
}
VLOG(2) << "Shrink " << tail << " <-> " << head;
while (head_depth > tail_depth) {
head_path.push_back(head);
head = nodes_[head].parent;
--head_depth;
}
while (tail != head) {
DCHECK_EQ(tail_depth, head_depth);
DCHECK_GE(tail_depth, 0);
if (DEBUG_MODE) {
--tail_depth;
--head_depth;
}
tail_path.push_back(tail);
tail = nodes_[tail].parent;
head_path.push_back(head);
head = nodes_[head].parent;
}
lca_index = tail;
VLOG(2) << "LCA " << lca_index;
}
Node& lca = nodes_[lca_index];
DCHECK(lca.IsPlus());
// Fill the cycle.
std::vector<NodeIndex> blossom = {lca_index};
std::reverse(head_path.begin(), head_path.end());
blossom.insert(blossom.end(), head_path.begin(), head_path.end());
blossom.insert(blossom.end(), tail_path.begin(), tail_path.end());
CHECK_EQ(blossom.size() % 2, 1);
const CostValue tree_dual = nodes_[lca.root].tree_dual_delta;
// Save all values that will be needed if we expand this Blossom later.
CHECK_GT(blossom.size(), 1);
Node& backup_node = nodes_[blossom[1]];
#ifndef NDEBUG
backup_node.saved_dual = lca.dual;
#endif
backup_node.saved_pseudo_dual = lca.pseudo_dual + tree_dual;
// Set the new dual of the node to zero.
#ifndef NDEBUG
lca.dual = 0;
#endif
lca.pseudo_dual = -tree_dual;
CHECK_EQ(Dual(lca), 0);
// Mark node as internal, but do not change their type to zero yet.
// We need to do that first to properly detect edges between two internal
// nodes in the second loop below.
for (const NodeIndex n : blossom) {
VLOG(2) << "blossom-node: " << NodeDebugString(n);
if (n != lca_index) {
nodes_[n].is_internal = true;
}
}
// Update the dual of all edges and the priority queueus.
for (const NodeIndex n : blossom) {
Node& mutable_node = nodes_[n];
const bool was_minus = mutable_node.IsMinus();
const CostValue slack_adjust =
mutable_node.IsMinus() ? tree_dual : -tree_dual;
if (n != lca_index) {
mutable_node.pseudo_dual -= slack_adjust;
#ifndef NDEBUG
DCHECK_EQ(mutable_node.dual, mutable_node.pseudo_dual);
#endif
mutable_node.type = 0;
}
for (const NodeIndex subnode : SubNodes(n)) {
// Subtle: We update root_blossom_node_ while we loop, so for new internal
// edges, depending if an edge "other end" appear after or before, it will
// not be updated. We use this to only process internal edges once.
root_blossom_node_[subnode] = lca_index;
for (const EdgeIndex e : graph_[subnode]) {
Edge& edge = edges_[e];
const NodeIndex other_end = OtherEnd(edge, subnode);
// Skip edge that are already internal.
if (other_end == n) continue;
// This internal edge was already processed from its other end, so we
// can just skip it.
if (other_end == lca_index) {
#ifndef NDEBUG
DCHECK_EQ(edge.slack, Slack(edge));
#endif
continue;
}
// This is a new-internal edge that we didn't process yet.
//
// TODO(user): It would be nicer to not to have to read the memory of
// the other node at all. It might be possible once we store the
// parent edge instead of the parent node since then we will only need
// to know if this edges point to a new-internal node or not.
Node& mutable_other_node = nodes_[other_end];
if (mutable_other_node.is_internal) {
DCHECK(!plus_free_pq_.Contains(&edge));
if (plus_plus_pq_.Contains(&edge)) plus_plus_pq_.Remove(&edge);
edge.pseudo_slack += slack_adjust;
edge.pseudo_slack +=
mutable_other_node.IsMinus() ? tree_dual : -tree_dual;
continue;
}
// Replace the parent of any child of n by lca_index.
if (mutable_other_node.parent == n) {
mutable_other_node.parent = lca_index;
}
// Adjust when the edge used to be connected to a [-] node now that we
// attach it to a [+] node. Note that if the node was [+] then the
// non-internal incident edges slack and type do not change.
if (was_minus) {
edge.pseudo_slack += 2 * tree_dual;
// Add it to the correct PQ.
DCHECK(!plus_plus_pq_.Contains(&edge));
DCHECK(!plus_free_pq_.Contains(&edge));
if (mutable_other_node.IsPlus()) {
plus_plus_pq_.Add(&edge);
if (edge.pseudo_slack == 2 * tree_dual) {
primal_update_edge_queue_.push_back(e);
}
} else if (mutable_other_node.IsFree()) {
plus_free_pq_.Add(&edge);
if (edge.pseudo_slack == tree_dual) {
primal_update_edge_queue_.push_back(e);
}
}
}
#ifndef NDEBUG
DCHECK_EQ(edge.slack, Slack(edge));
#endif
}
}
}
DCHECK(backup_node.saved_blossom.empty());
backup_node.saved_blossom = std::move(lca.blossom);
lca.blossom = std::move(blossom);
VLOG(2) << "S result " << NodeDebugString(lca_index);
}
BlossomGraph::EdgeIndex BlossomGraph::FindTightExternalEdgeBetweenNodes(
NodeIndex tail, NodeIndex head) {
DCHECK_NE(tail, head);
DCHECK_EQ(tail, root_blossom_node_[tail]);
DCHECK_EQ(head, root_blossom_node_[head]);
for (const NodeIndex subnode : SubNodes(tail)) {
for (const EdgeIndex e : graph_[subnode]) {
const Edge& edge = edges_[e];
const NodeIndex other_end = OtherEnd(edge, subnode);
if (other_end == head && Slack(edge) == 0) {
return e;
}
}
}
return kNoEdgeIndex;
}
void BlossomGraph::Expand(NodeIndex to_expand) {
++num_expands_;
VLOG(2) << "Expand " << to_expand;
Node& node_to_expand = nodes_[to_expand];
DCHECK(node_to_expand.IsBlossom());
DCHECK(node_to_expand.IsMinus());
DCHECK_EQ(Dual(node_to_expand), 0);
const EdgeIndex match_edge_index =
FindTightExternalEdgeBetweenNodes(to_expand, node_to_expand.match);
const EdgeIndex parent_edge_index =
FindTightExternalEdgeBetweenNodes(to_expand, node_to_expand.parent);
// First, restore the saved fields.
Node& backup_node = nodes_[node_to_expand.blossom[1]];
#ifndef NDEBUG
node_to_expand.dual = backup_node.saved_dual;
#endif
node_to_expand.pseudo_dual = backup_node.saved_pseudo_dual;
std::vector<NodeIndex> blossom = std::move(node_to_expand.blossom);
node_to_expand.blossom = std::move(backup_node.saved_blossom);
backup_node.saved_blossom.clear();
// Restore the edges Head()/Tail().
for (const NodeIndex n : blossom) {
for (const NodeIndex subnode : SubNodes(n)) {
root_blossom_node_[subnode] = n;
}
}
// Now we try to find a 'blossom path' that will replace the blossom node in
// the alternating tree: the blossom's parent [+] node in the tree will be
// attached to a blossom subnode (the "path start"), the blossom's child in
// the tree will be attached to a blossom subnode (the "path end", which could
// be the same subnode or a different one), and, using the blossom cycle,
// we'll get a path with an odd number of blossom subnodes to connect the two
// (since the cycle is odd, one of the two paths will be odd too). The other
// subnodes of the blossom will then be made free nodes matched pairwise.
int blossom_path_start = -1;
int blossom_path_end = -1;
const NodeIndex start_node = OtherEndFromExternalNode(
edges_[parent_edge_index], node_to_expand.parent);
const NodeIndex end_node =
OtherEndFromExternalNode(edges_[match_edge_index], node_to_expand.match);
for (int i = 0; i < blossom.size(); ++i) {
if (blossom[i] == start_node) blossom_path_start = i;
if (blossom[i] == end_node) blossom_path_end = i;
}
// Split the cycle in two halves: nodes in [start..end] in path1, and
// nodes in [end..start] in path2. Note the inclusive intervals.
const std::vector<NodeIndex>& cycle = blossom;
std::vector<NodeIndex> path1;
std::vector<NodeIndex> path2;
{
const int end_offset =
(blossom_path_end + cycle.size() - blossom_path_start) % cycle.size();
for (int offset = 0; offset <= /*or equal*/ cycle.size(); ++offset) {
const NodeIndex node =
cycle[(blossom_path_start + offset) % cycle.size()];
if (offset <= end_offset) path1.push_back(node);
if (offset >= end_offset) path2.push_back(node);
}
}
// Reverse path2 to also make it go from start to end.
std::reverse(path2.begin(), path2.end());
// Swap if necessary so that path1 is the odd-length one.
if (path1.size() % 2 == 0) path1.swap(path2);
// Use better aliases than 'path1' and 'path2' in the code below.
std::vector<NodeIndex>& path_in_tree = path1;
const std::vector<NodeIndex>& free_pairs = path2;
// Strip path2 from the start and end, which aren't needed.
path2.erase(path2.begin());
path2.pop_back();
const NodeIndex blossom_matched_node = node_to_expand.match;
VLOG(2) << "Path ["
<< absl::StrJoin(path_in_tree, ", ", absl::StreamFormatter())
<< "] === " << blossom_matched_node;
VLOG(2) << "Pairs ["
<< absl::StrJoin(free_pairs, ", ", absl::StreamFormatter()) << "]";
// Restore the path in the tree, note that we append the blossom_matched_node
// to simplify the code:
// <---- Blossom ---->
// [-] === [+] --- [-] === [+]
path_in_tree.push_back(blossom_matched_node);
CHECK_EQ(path_in_tree.size() % 2, 0);
const CostValue tree_dual = nodes_[node_to_expand.root].tree_dual_delta;
for (int i = 0; i < path_in_tree.size(); ++i) {
const NodeIndex n = path_in_tree[i];
const bool node_is_plus = i % 2;
// Update the parent.
if (i == 0) {
// This is the path start and its parent is either itself or the parent of
// to_expand if there was one.
DCHECK(node_to_expand.parent != to_expand || n == to_expand);
nodes_[n].parent = node_to_expand.parent;
} else {
nodes_[n].parent = path_in_tree[i - 1];
}
// Update the types and matches.
nodes_[n].root = node_to_expand.root;
nodes_[n].type = node_is_plus ? 1 : -1;
nodes_[n].match = path_in_tree[node_is_plus ? i - 1 : i + 1];
// Ignore the blossom_matched_node for the code below.
if (i + 1 == path_in_tree.size()) continue;
// Update the duals, depending on whether we have a new [+] or [-] node.
// Note that this is also needed for the 'root' blossom node (i=0), because
// we've restored its pseudo-dual from its old saved value above.
const CostValue adjust = node_is_plus ? -tree_dual : tree_dual;
nodes_[n].pseudo_dual += adjust;
for (const NodeIndex subnode : SubNodes(n)) {
for (const EdgeIndex e : graph_[subnode]) {
Edge& edge = edges_[e];
const NodeIndex other_end = OtherEnd(edge, subnode);
if (other_end == n) continue;
edge.pseudo_slack -= adjust;
// non-internal edges used to be attached to the [-] node_to_expand,
// so we adjust their dual.
if (other_end != to_expand && !nodes_[other_end].is_internal) {
edge.pseudo_slack += tree_dual;
} else {
// This was an internal edges. For the PQ code below to be correct, we
// wait for its other end to have been processed by this loop already.
// We detect that using the fact that the type of unprocessed internal
// node is still zero.
if (nodes_[other_end].type == 0) continue;
}
// Update edge queues.
if (node_is_plus) {
const Node& other_node = nodes_[other_end];
DCHECK(!plus_plus_pq_.Contains(&edge));
DCHECK(!plus_free_pq_.Contains(&edge));
if (other_node.IsPlus()) {