forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SimpleMinCostFlowProgram.java
87 lines (78 loc) · 3.2 KB
/
SimpleMinCostFlowProgram.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// [START program]
// From Bradley, Hax, and Maganti, 'Applied Mathematical Programming', figure 8.1.
package com.google.ortools.graph.samples;
// [START import]
import com.google.ortools.Loader;
import com.google.ortools.graph.MinCostFlow;
import com.google.ortools.graph.MinCostFlowBase;
// [END import]
/** Minimal MinCostFlow program. */
public class SimpleMinCostFlowProgram {
public static void main(String[] args) throws Exception {
Loader.loadNativeLibraries();
// [START solver]
// Instantiate a SimpleMinCostFlow solver.
MinCostFlow minCostFlow = new MinCostFlow();
// [END solver]
// [START data]
// Define four parallel arrays: sources, destinations, capacities, and unit costs
// between each pair. For instance, the arc from node 0 to node 1 has a
// capacity of 15.
// Problem taken From Taha's 'Introduction to Operations Research',
// example 6.4-2.
int[] startNodes = new int[] {0, 0, 1, 1, 1, 2, 2, 3, 4};
int[] endNodes = new int[] {1, 2, 2, 3, 4, 3, 4, 4, 2};
int[] capacities = new int[] {15, 8, 20, 4, 10, 15, 4, 20, 5};
int[] unitCosts = new int[] {4, 4, 2, 2, 6, 1, 3, 2, 3};
// Define an array of supplies at each node.
int[] supplies = new int[] {20, 0, 0, -5, -15};
// [END data]
// [START constraints]
// Add each arc.
for (int i = 0; i < startNodes.length; ++i) {
int arc = minCostFlow.addArcWithCapacityAndUnitCost(
startNodes[i], endNodes[i], capacities[i], unitCosts[i]);
if (arc != i) {
throw new Exception("Internal error");
}
}
// Add node supplies.
for (int i = 0; i < supplies.length; ++i) {
minCostFlow.setNodeSupply(i, supplies[i]);
}
// [END constraints]
// [START solve]
// Find the min cost flow.
MinCostFlowBase.Status status = minCostFlow.solve();
// [END solve]
// [START print_solution]
if (status == MinCostFlow.Status.OPTIMAL) {
System.out.println("Minimum cost: " + minCostFlow.getOptimalCost());
System.out.println();
System.out.println(" Edge Flow / Capacity Cost");
for (int i = 0; i < minCostFlow.getNumArcs(); ++i) {
long cost = minCostFlow.getFlow(i) * minCostFlow.getUnitCost(i);
System.out.println(minCostFlow.getTail(i) + " -> " + minCostFlow.getHead(i) + " "
+ minCostFlow.getFlow(i) + " / " + minCostFlow.getCapacity(i) + " " + cost);
}
} else {
System.out.println("Solving the min cost flow problem failed.");
System.out.println("Solver status: " + status);
}
// [END print_solution]
}
private SimpleMinCostFlowProgram() {}
}
// [END program]