forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
assignment_min_flow.cc
99 lines (88 loc) · 3.55 KB
/
assignment_min_flow.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// [START program]
// [START import]
#include <cstdint>
#include <vector>
#include "ortools/graph/min_cost_flow.h"
// [END import]
namespace operations_research {
// MinCostFlow simple interface example.
void AssignmentMinFlow() {
// [START solver]
// Instantiate a SimpleMinCostFlow solver.
SimpleMinCostFlow min_cost_flow;
// [END solver]
// [START data]
// Define four parallel arrays: sources, destinations, capacities,
// and unit costs between each pair. For instance, the arc from node 0
// to node 1 has a capacity of 15.
const std::vector<int64_t> start_nodes = {0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
3, 3, 3, 3, 4, 4, 4, 4, 5, 6, 7, 8};
const std::vector<int64_t> end_nodes = {1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8,
5, 6, 7, 8, 5, 6, 7, 8, 9, 9, 9, 9};
const std::vector<int64_t> capacities = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
const std::vector<int64_t> unit_costs = {0, 0, 0, 0, 90, 76, 75, 70,
35, 85, 55, 65, 125, 95, 90, 105,
45, 110, 95, 115, 0, 0, 0, 0};
const int64_t source = 0;
const int64_t sink = 9;
const int64_t tasks = 4;
// Define an array of supplies at each node.
const std::vector<int64_t> supplies = {tasks, 0, 0, 0, 0, 0, 0, 0, 0, -tasks};
// [END data]
// [START constraints]
// Add each arc.
for (int i = 0; i < start_nodes.size(); ++i) {
int arc = min_cost_flow.AddArcWithCapacityAndUnitCost(
start_nodes[i], end_nodes[i], capacities[i], unit_costs[i]);
if (arc != i) LOG(FATAL) << "Internal error";
}
// Add node supplies.
for (int i = 0; i < supplies.size(); ++i) {
min_cost_flow.SetNodeSupply(i, supplies[i]);
}
// [END constraints]
// [START solve]
// Find the min cost flow.
int status = min_cost_flow.Solve();
// [END solve]
// [START print_solution]
if (status == MinCostFlow::OPTIMAL) {
LOG(INFO) << "Total cost: " << min_cost_flow.OptimalCost();
LOG(INFO) << "";
for (std::size_t i = 0; i < min_cost_flow.NumArcs(); ++i) {
// Can ignore arcs leading out of source or into sink.
if (min_cost_flow.Tail(i) != source && min_cost_flow.Head(i) != sink) {
// Arcs in the solution have a flow value of 1. Their start and end
// nodes give an assignment of worker to task.
if (min_cost_flow.Flow(i) > 0) {
LOG(INFO) << "Worker " << min_cost_flow.Tail(i)
<< " assigned to task " << min_cost_flow.Head(i)
<< " Cost: " << min_cost_flow.UnitCost(i);
}
}
}
} else {
LOG(INFO) << "Solving the min cost flow problem failed.";
LOG(INFO) << "Solver status: " << status;
}
// [END print_solution]
}
} // namespace operations_research
int main() {
operations_research::AssignmentMinFlow();
return EXIT_SUCCESS;
}
// [END program]