forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
topologicalsorter.cc
263 lines (233 loc) · 8.7 KB
/
topologicalsorter.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/graph/topologicalsorter.h"
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <limits>
#include <map>
#include <queue>
#include <string>
#include <utility>
#include <vector>
#include "absl/status/status.h"
#include "ortools/base/map_util.h"
#include "ortools/base/stl_util.h"
namespace util {
namespace internal {
namespace {
template <typename IntQueue>
inline void PopTop(IntQueue* q, int* top) {
*top = q->front();
q->pop();
}
template <typename C, typename F>
void PopTop(std::priority_queue<int, C, F>* q, int* top) {
*top = q->top();
q->pop();
}
} // namespace
template <bool stable_sort>
void DenseIntTopologicalSorterTpl<stable_sort>::AddNode(int node_index) {
CHECK(!TraversalStarted()) << "Cannot add nodes after starting traversal";
CHECK_GE(node_index, 0) << "Index must not be negative";
if (static_cast<std::size_t>(node_index) >= adjacency_lists_.size()) {
adjacency_lists_.resize(node_index + 1);
}
}
// Up to a point, we detect duplicates up front and do not insert them.
// Then we switch to using RemoveDuplicates(), see below.
//
// Note(user): I did benchmarks on this in November 2011, and while
// 32 seemed too large, I did not see very significant performance
// differences with 0, 4, 8 or 16. But since larger values of this
// threshold mean that there will be slightly less space used up by
// small adjacency lists in case there are repeated edges, I picked 16.
static const int kLazyDuplicateDetectionSizeThreshold = 16;
template <bool stable_sort>
void DenseIntTopologicalSorterTpl<stable_sort>::AddEdges(
const std::vector<std::pair<int, int>>& edges) {
CHECK(!TraversalStarted()) << "Cannot add edges after starting traversal";
// Make a first pass to detect the number of nodes.
int max_node = -1;
for (const auto& [from, to] : edges) {
if (from > max_node) max_node = from;
if (to > max_node) max_node = to;
}
if (max_node >= 0) AddNode(max_node);
// Make a second pass to reserve the adjacency list sizes.
// We use indegree_ as temporary node buffer to store the node out-degrees,
// since it isn't being used yet.
indegree_.assign(max_node + 1, 0);
for (const auto& [from, to] : edges) ++indegree_[from];
for (int node = 0; node < max_node; ++node) {
adjacency_lists_[node].reserve(indegree_[node]);
}
indegree_.clear();
// Finally, add edges to the adjacency lists in a third pass. Don't bother
// doing the duplicate detection: in the bulk API, we assume that there isn't
// much edge duplication.
for (const auto& [from, to] : edges) adjacency_lists_[from].push_back(to);
}
template <bool stable_sort>
void DenseIntTopologicalSorterTpl<stable_sort>::AddEdge(int from, int to) {
CHECK(!TraversalStarted()) << "Cannot add edges after starting traversal";
AddNode(std::max(from, to));
AdjacencyList& adj_list = adjacency_lists_[from];
const uint32_t adj_list_size = adj_list.size();
if (adj_list_size <= kLazyDuplicateDetectionSizeThreshold) {
for (AdjacencyList::const_iterator it = adj_list.begin();
it != adj_list.end(); ++it) {
if (*it == to) {
return;
}
}
adj_list.push_back(to);
++num_edges_;
} else {
adj_list.push_back(to);
if (++num_edges_added_since_last_duplicate_removal_ > ++num_edges_ / 2) {
num_edges_added_since_last_duplicate_removal_ = 0;
// We remove all duplicates at once, but skip lists for which the
// number of duplicates can't be too large, i.e. lists smaller than
// kLazyDuplicateDetectionSizeThreshold * 2. The overall ratio of
// duplicate edges remains bounded by 2/3 in the worst case.
num_edges_ -= RemoveDuplicates(&adjacency_lists_,
kLazyDuplicateDetectionSizeThreshold * 2);
}
}
}
template <bool stable_sort>
bool DenseIntTopologicalSorterTpl<stable_sort>::GetNext(
int* next_node_index, bool* cyclic, std::vector<int>* output_cycle_nodes) {
if (!TraversalStarted()) {
StartTraversal();
}
*cyclic = false;
if (num_nodes_left_ == 0) {
return false;
}
if (nodes_with_zero_indegree_.empty()) {
VLOG(2) << "Not all nodes have been visited (" << num_nodes_left_
<< " nodes left), but there aren't any zero-indegree nodes"
<< " available. This graph is cyclic! Use ExtractCycle() for"
<< " more information.";
*cyclic = true;
if (output_cycle_nodes != nullptr) {
ExtractCycle(output_cycle_nodes);
}
return false;
}
// Pop one orphan node.
--num_nodes_left_;
PopTop(&nodes_with_zero_indegree_, next_node_index);
// Swap out the adjacency list, since we won't need it afterwards,
// to decrease memory usage.
AdjacencyList adj_list;
adj_list.swap(adjacency_lists_[*next_node_index]);
// Add new orphan nodes to nodes_with_zero_indegree_.
for (std::size_t i = 0; i < adj_list.size(); ++i) {
if (--indegree_[adj_list[i]] == 0) {
nodes_with_zero_indegree_.push(adj_list[i]);
}
}
return true;
}
template <bool stable_sort>
void DenseIntTopologicalSorterTpl<stable_sort>::StartTraversal() {
if (TraversalStarted()) {
return;
}
const int num_nodes = adjacency_lists_.size();
indegree_.assign(num_nodes, 0);
// Iterate over all adjacency lists, and fill the indegree[] vector.
// Note that we don't bother removing duplicates: there can't be
// too many, since we removed them progressively, and it is actually
// cheaper to keep them at this point.
for (int from = 0; from < num_nodes; ++from) {
AdjacencyList& adj_list = adjacency_lists_[from];
for (AdjacencyList::const_iterator it = adj_list.begin();
it != adj_list.end(); ++it) {
++indegree_[*it];
}
}
// Initialize the nodes_with_zero_indegree_ vector.
for (int node = 0; node < num_nodes; ++node) {
if (indegree_[node] == 0) {
nodes_with_zero_indegree_.push(node);
}
}
num_nodes_left_ = num_nodes;
traversal_started_ = true;
}
// static
template <bool stable_sort>
int DenseIntTopologicalSorterTpl<stable_sort>::RemoveDuplicates(
std::vector<AdjacencyList>* lists, int skip_lists_smaller_than) {
// We can always skip lists with less than 2 elements.
if (skip_lists_smaller_than < 2) {
skip_lists_smaller_than = 2;
}
const int n = lists->size();
std::vector<bool> visited(n, false);
int num_duplicates_removed = 0;
for (std::vector<AdjacencyList>::iterator list = lists->begin();
list != lists->end(); ++list) {
if (list->size() < static_cast<std::size_t>(skip_lists_smaller_than)) {
continue;
}
num_duplicates_removed += list->size();
// To optimize the duplicate removal loop, we split it in two:
// first, find the first duplicate, then copy the rest of the shifted
// adjacency list as we keep detecting duplicates.
AdjacencyList::iterator it = list->begin();
DCHECK(it != list->end());
while (!visited[*it]) {
visited[*(it++)] = true;
if (it == list->end()) {
break;
}
}
// Skip the shifted copy if there were no duplicates at all.
if (it != list->end()) {
AdjacencyList::iterator it2 = it;
while (++it != list->end()) {
if (!visited[*it]) {
visited[*it] = true;
*(it2++) = *it;
}
}
list->erase(it2, list->end());
}
for (it = list->begin(); it != list->end(); ++it) {
visited[*it] = false;
}
num_duplicates_removed -= list->size();
}
return num_duplicates_removed;
}
// Note(user): as of 2012-09, this implementation works in
// O(number of edges + number of nodes), which is the theoretical best.
// It could probably be optimized to gain a significant constant speed-up;
// but at the cost of more code complexity.
template <bool stable_sort>
void DenseIntTopologicalSorterTpl<stable_sort>::ExtractCycle(
std::vector<int>* cycle_nodes) const {
*cycle_nodes = util::graph::FindCycleInGraph(adjacency_lists_).value();
}
// Generate the templated code. Including these definitions allows us
// to have templated code inside the .cc file and not incur linker errors.
template class DenseIntTopologicalSorterTpl<false>;
template class DenseIntTopologicalSorterTpl<true>;
} // namespace internal
} // namespace util