forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
AssignmentMip.java
121 lines (112 loc) · 3.79 KB
/
AssignmentMip.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// [START program]
package com.google.ortools.linearsolver.samples;
// [START import]
import com.google.ortools.Loader;
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;
// [END import]
/** MIP example that solves an assignment problem. */
public class AssignmentMip {
public static void main(String[] args) {
Loader.loadNativeLibraries();
// Data
// [START data_model]
double[][] costs = {
{90, 80, 75, 70},
{35, 85, 55, 65},
{125, 95, 90, 95},
{45, 110, 95, 115},
{50, 100, 90, 100},
};
int numWorkers = costs.length;
int numTasks = costs[0].length;
// [END data_model]
// Solver
// [START solver]
// Create the linear solver with the SCIP backend.
MPSolver solver = MPSolver.createSolver("SCIP");
if (solver == null) {
System.out.println("Could not create solver SCIP");
return;
}
// [END solver]
// Variables
// [START variables]
// x[i][j] is an array of 0-1 variables, which will be 1
// if worker i is assigned to task j.
MPVariable[][] x = new MPVariable[numWorkers][numTasks];
for (int i = 0; i < numWorkers; ++i) {
for (int j = 0; j < numTasks; ++j) {
x[i][j] = solver.makeIntVar(0, 1, "");
}
}
// [END variables]
// Constraints
// [START constraints]
// Each worker is assigned to at most one task.
for (int i = 0; i < numWorkers; ++i) {
MPConstraint constraint = solver.makeConstraint(0, 1, "");
for (int j = 0; j < numTasks; ++j) {
constraint.setCoefficient(x[i][j], 1);
}
}
// Each task is assigned to exactly one worker.
for (int j = 0; j < numTasks; ++j) {
MPConstraint constraint = solver.makeConstraint(1, 1, "");
for (int i = 0; i < numWorkers; ++i) {
constraint.setCoefficient(x[i][j], 1);
}
}
// [END constraints]
// Objective
// [START objective]
MPObjective objective = solver.objective();
for (int i = 0; i < numWorkers; ++i) {
for (int j = 0; j < numTasks; ++j) {
objective.setCoefficient(x[i][j], costs[i][j]);
}
}
objective.setMinimization();
// [END objective]
// Solve
// [START solve]
MPSolver.ResultStatus resultStatus = solver.solve();
// [END solve]
// Print solution.
// [START print_solution]
// Check that the problem has a feasible solution.
if (resultStatus == MPSolver.ResultStatus.OPTIMAL
|| resultStatus == MPSolver.ResultStatus.FEASIBLE) {
System.out.println("Total cost: " + objective.value() + "\n");
for (int i = 0; i < numWorkers; ++i) {
for (int j = 0; j < numTasks; ++j) {
// Test if x[i][j] is 0 or 1 (with tolerance for floating point
// arithmetic).
if (x[i][j].solutionValue() > 0.5) {
System.out.println(
"Worker " + i + " assigned to task " + j + ". Cost = " + costs[i][j]);
}
}
}
} else {
System.err.println("No solution found.");
}
// [END print_solution]
}
private AssignmentMip() {}
}
// [END program]