forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
assignment_mb.py
94 lines (83 loc) · 2.84 KB
/
assignment_mb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#!/usr/bin/env python3
# Copyright 2010-2022 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MIP example that solves an assignment problem."""
# [START program]
# [START import]
from ortools.linear_solver.python import model_builder
# [END import]
def main():
# Data
# [START data_model]
costs = [
[90, 80, 75, 70],
[35, 85, 55, 65],
[125, 95, 90, 95],
[45, 110, 95, 115],
[50, 100, 90, 100],
]
num_workers = len(costs)
num_tasks = len(costs[0])
# [END data_model]
# Solver
# Create the model.
model = model_builder.ModelBuilder()
# [END model]
# Variables
# [START variables]
# x[i, j] is an array of 0-1 variables, which will be 1
# if worker i is assigned to task j.
x = {}
for i in range(num_workers):
for j in range(num_tasks):
x[i, j] = model.new_bool_var(f'x_{i}_{j}')
# [END variables]
# Constraints
# [START constraints]
# Each worker is assigned to at most 1 task.
for i in range(num_workers):
model.add(sum(x[i, j] for j in range(num_tasks)) <= 1)
# Each task is assigned to exactly one worker.
for j in range(num_tasks):
model.add(sum(x[i, j] for i in range(num_workers)) == 1)
# [END constraints]
# Objective
# [START objective]
objective_expr = 0
for i in range(num_workers):
for j in range(num_tasks):
objective_expr += costs[i][j] * x[i, j]
model.minimize(objective_expr)
# [END objective]
# [START solve]
# Create the solver with the CP-SAT backend, and solve the model.
solver = model_builder.ModelSolver('sat')
status = solver.solve(model)
# [END solve]
# Print solution.
# [START print_solution]
if (status == model_builder.SolveStatus.OPTIMAL or
status == model_builder.SolveStatus.FEASIBLE):
print(f'Total cost = {solver.objective_value}\n')
for i in range(num_workers):
for j in range(num_tasks):
# Test if x[i,j] is 1 (with tolerance for floating point arithmetic).
if solver.value(x[i, j]) > 0.5:
print(f'Worker {i} assigned to task {j}.' +
f' Cost: {costs[i][j]}')
else:
print('No solution found.')
# [END print_solution]
if __name__ == '__main__':
main()
# [END program]