forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
integer_programming_example.cc
96 lines (85 loc) · 3.2 KB
/
integer_programming_example.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// [START program]
// [START import]
#include <iostream>
#include <memory>
#include "ortools/linear_solver/linear_solver.h"
// [END import]
namespace operations_research {
void IntegerProgrammingExample() {
// [START solver]
// Create the mip solver with the SCIP backend.
std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP"));
if (!solver) {
LOG(WARNING) << "SCIP solver unavailable.";
return;
}
// [END solver]
// [START variables]
// x, y, and z are non-negative integer variables.
MPVariable* const x = solver->MakeIntVar(0.0, solver->infinity(), "x");
MPVariable* const y = solver->MakeIntVar(0.0, solver->infinity(), "y");
MPVariable* const z = solver->MakeIntVar(0.0, solver->infinity(), "z");
LOG(INFO) << "Number of variables = " << solver->NumVariables();
// [END variables]
// [START constraints]
// 2*x + 7*y + 3*z <= 50
MPConstraint* const constraint0 =
solver->MakeRowConstraint(-solver->infinity(), 50);
constraint0->SetCoefficient(x, 2);
constraint0->SetCoefficient(y, 7);
constraint0->SetCoefficient(z, 3);
// 3*x - 5*y + 7*z <= 45
MPConstraint* const constraint1 =
solver->MakeRowConstraint(-solver->infinity(), 45);
constraint1->SetCoefficient(x, 3);
constraint1->SetCoefficient(y, -5);
constraint1->SetCoefficient(z, 7);
// 5*x + 2*y - 6*z <= 37
MPConstraint* const constraint2 =
solver->MakeRowConstraint(-solver->infinity(), 37);
constraint2->SetCoefficient(x, 5);
constraint2->SetCoefficient(y, 2);
constraint2->SetCoefficient(z, -6);
LOG(INFO) << "Number of constraints = " << solver->NumConstraints();
// [END constraints]
// [START objective]
// Maximize 2*x + 2*y + 3*z
MPObjective* const objective = solver->MutableObjective();
objective->SetCoefficient(x, 2);
objective->SetCoefficient(y, 2);
objective->SetCoefficient(z, 3);
objective->SetMaximization();
// [END objective]
// [START solve]
const MPSolver::ResultStatus result_status = solver->Solve();
// Check that the problem has an optimal solution.
if (result_status != MPSolver::OPTIMAL) {
LOG(FATAL) << "The problem does not have an optimal solution!";
}
// [END solve]
// [START print_solution]
LOG(INFO) << "Solution:";
LOG(INFO) << "Optimal objective value = " << objective->Value();
LOG(INFO) << x->name() << " = " << x->solution_value();
LOG(INFO) << y->name() << " = " << y->solution_value();
LOG(INFO) << z->name() << " = " << z->solution_value();
// [END print_solution]
}
} // namespace operations_research
int main(int argc, char** argv) {
operations_research::IntegerProgrammingExample();
return EXIT_SUCCESS;
}
// [END program]