forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
linear_programming_example.py
executable file
·79 lines (65 loc) · 2.33 KB
/
linear_programming_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#!/usr/bin/env python3
# Copyright 2010-2022 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Linear optimization example."""
# [START program]
# [START import]
from ortools.linear_solver import pywraplp
# [END import]
def LinearProgrammingExample():
"""Linear programming sample."""
# Instantiate a Glop solver, naming it LinearExample.
# [START solver]
solver = pywraplp.Solver.CreateSolver('GLOP')
if not solver:
return
# [END solver]
# Create the two variables and let them take on any non-negative value.
# [START variables]
x = solver.NumVar(0, solver.infinity(), 'x')
y = solver.NumVar(0, solver.infinity(), 'y')
print('Number of variables =', solver.NumVariables())
# [END variables]
# [START constraints]
# Constraint 0: x + 2y <= 14.
solver.Add(x + 2 * y <= 14.0)
# Constraint 1: 3x - y >= 0.
solver.Add(3 * x - y >= 0.0)
# Constraint 2: x - y <= 2.
solver.Add(x - y <= 2.0)
print('Number of constraints =', solver.NumConstraints())
# [END constraints]
# [START objective]
# Objective function: 3x + 4y.
solver.Maximize(3 * x + 4 * y)
# [END objective]
# Solve the system.
# [START solve]
status = solver.Solve()
# [END solve]
# [START print_solution]
if status == pywraplp.Solver.OPTIMAL:
print('Solution:')
print('Objective value =', solver.Objective().Value())
print('x =', x.solution_value())
print('y =', y.solution_value())
else:
print('The problem does not have an optimal solution.')
# [END print_solution]
# [START advanced]
print('\nAdvanced usage:')
print('Problem solved in %f milliseconds' % solver.wall_time())
print('Problem solved in %d iterations' % solver.iterations())
# [END advanced]
LinearProgrammingExample()
# [END program]