forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
simple_pdlp_program.py
110 lines (95 loc) · 4.46 KB
/
simple_pdlp_program.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#!/usr/bin/env python3
# Copyright 2010-2022 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Solves a simple LP using PDLP's direct Python API.
Note: The direct API is generally for advanced use cases. It is matrix-based,
that is, you specify the LP using matrices and vectors instead of algebraic
expressions. You can also use PDLP via the algebraic pywraplp API (see
linear_solver/samples/simple_lp_program.py).
"""
import numpy as np
import scipy.sparse
from ortools.pdlp import solve_log_pb2
from ortools.pdlp import solvers_pb2
from ortools.pdlp.python import pywrap_pdlp
from ortools.init import pywrapinit
def simple_lp() -> pywrap_pdlp.QuadraticProgram:
"""Returns a small LP.
min 5.5 x_0 - 2 x_1 - x_2 + x_3 - 14 s.t.
2 x_0 + x_1 + x_2 + 2 x_3 = 12
x_0 + x_2 <= 7
4 x_0 >= -4
-1 <= 1.5 x_2 - x_3 <= 1
-infinity <= x_0 <= infinity
-2 <= x_1 <= infinity
-infinity <= x_2 <= 6
2.5 <= x_3 <= 3.5
"""
lp = pywrap_pdlp.QuadraticProgram()
lp.objective_offset = -14
lp.objective_vector = [5.5, -2, -1, 1]
lp.constraint_lower_bounds = [12, -np.inf, -4, -1]
lp.constraint_upper_bounds = [12, 7, np.inf, 1]
lp.variable_lower_bounds = [-np.inf, -2, -np.inf, 2.5]
lp.variable_upper_bounds = [np.inf, np.inf, 6, 3.5]
# Most use cases should initialize the sparse constraint matrix without
# constructing a dense matrix first! We use a np.array here for convenience
# only.
constraint_matrix = np.array([[2, 1, 1, 2], [1, 0, 1, 0], [4, 0, 0, 0],
[0, 0, 1.5, -1]])
lp.constraint_matrix = scipy.sparse.csc_matrix(constraint_matrix)
return lp
def main() -> None:
params = solvers_pb2.PrimalDualHybridGradientParams()
# Below are some common parameters to modify. Here, we just re-assign the
# defaults.
optimality_criteria = params.termination_criteria.simple_optimality_criteria
optimality_criteria.eps_optimal_relative = 1.0e-6
optimality_criteria.eps_optimal_absolute = 1.0e-6
params.termination_criteria.time_sec_limit = np.inf
params.num_threads = 1
params.verbosity_level = 0
params.presolve_options.use_glop = False
# Call the main solve function. Note that a quirk of the pywrap11 API forces
# us to serialize the `params` and deserialize the `solve_log` proto messages.
result = pywrap_pdlp.primal_dual_hybrid_gradient(simple_lp(),
params.SerializeToString())
solve_log = solve_log_pb2.SolveLog.FromString(result.solve_log_str)
if solve_log.termination_reason == solve_log_pb2.TERMINATION_REASON_OPTIMAL:
print('Solve successful')
else:
print(
'Solve not successful. Status:',
solve_log_pb2.TerminationReason.Name(solve_log.termination_reason))
# Solutions vectors are always returned. *However*, their interpretation
# depends on termination_reason! See primal_dual_hybrid_gradient.h for more
# details on what the vectors mean if termination_reason is not
# TERMINATION_REASON_OPTIMAL.
print('Primal solution:', result.primal_solution)
print('Dual solution:', result.dual_solution)
print('Reduced costs:', result.reduced_costs)
solution_type = solve_log.solution_type
print('Solution type:', solve_log_pb2.PointType.Name(solution_type))
for ci in solve_log.solution_stats.convergence_information:
if ci.candidate_type == solution_type:
print('Primal objective:', ci.primal_objective)
print('Dual objective:', ci.dual_objective)
print('Iterations:', solve_log.iteration_count)
print('Solve time (sec):', solve_log.solve_time_sec)
if __name__ == '__main__':
pywrapinit.CppBridge.InitLogging('simple_pdlp_program.py')
cpp_flags = pywrapinit.CppFlags()
cpp_flags.logtostderr = True
cpp_flags.log_prefix = False
pywrapinit.CppBridge.SetFlags(cpp_flags)
main()