forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sharded_optimization_utils.cc
747 lines (693 loc) · 30.4 KB
/
sharded_optimization_utils.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/pdlp/sharded_optimization_utils.h"
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <limits>
#include <optional>
#include <random>
#include <utility>
#include <vector>
#include "Eigen/Core"
#include "Eigen/SparseCore"
#include "absl/random/distributions.h"
#include "ortools/base/check.h"
#include "ortools/base/logging.h"
#include "ortools/base/mathutil.h"
#include "ortools/pdlp/quadratic_program.h"
#include "ortools/pdlp/sharded_quadratic_program.h"
#include "ortools/pdlp/sharder.h"
namespace operations_research::pdlp {
constexpr double kInfinity = std::numeric_limits<double>::infinity();
using ::Eigen::ColMajor;
using ::Eigen::SparseMatrix;
using ::Eigen::VectorXd;
using ::Eigen::VectorXi;
ShardedWeightedAverage::ShardedWeightedAverage(const Sharder* sharder)
: sharder_(sharder) {
average_ = ZeroVector(*sharder_);
}
// We considered the five averaging algorithms M_* listed on the first page of
// https://www.jstor.org/stable/2286154 and the Kahan summation algorithm
// (https://en.wikipedia.org/wiki/Kahan_summation_algorithm). Of these only M_14
// satisfies our desired property that a constant sequence is averaged without
// roundoff while requiring only a single vector be stored. We therefore use
// M_14 (actually a natural weighted generalization, see below).
void ShardedWeightedAverage::Add(const VectorXd& datapoint, double weight) {
CHECK_GE(weight, 0.0);
CHECK_EQ(datapoint.size(), average_.size());
// This `if` protects against NaN if sum_weights_ also == 0.0.
if (weight > 0.0) {
const double weight_ratio = weight / (sum_weights_ + weight);
sharder_->ParallelForEachShard([&](const Sharder::Shard& shard) {
shard(average_) += weight_ratio * (shard(datapoint) - shard(average_));
});
sum_weights_ += weight;
}
++num_terms_;
}
void ShardedWeightedAverage::Clear() {
SetZero(*sharder_, average_);
sum_weights_ = 0.0;
num_terms_ = 0;
}
VectorXd ShardedWeightedAverage::ComputeAverage() const {
VectorXd result;
// TODO(user): consider returning a reference to avoid this copy.
AssignVector(average_, *sharder_, result);
return result;
}
namespace {
double CombineBounds(const double v1, const double v2,
const double infinite_bound_threshold) {
double max = 0.0;
if (std::abs(v1) < infinite_bound_threshold) {
max = std::abs(v1);
}
if (std::abs(v2) < infinite_bound_threshold) {
max = std::max(max, std::abs(v2));
}
return max;
}
struct VectorInfo {
int64_t num_finite_nonzero = 0;
int64_t num_infinite = 0;
int64_t num_zero = 0;
// The largest absolute value of the finite non-zero values.
double largest = 0.0;
// The smallest absolute value of the finite non-zero values.
double smallest = 0.0;
// The average absolute value of the finite values.
double average = 0.0;
// The L2 norm of the finite values.
double l2_norm = 0.0;
};
struct InfNormInfo {
VectorInfo row_norms;
VectorInfo col_norms;
};
// VectorInfoAccumulator accumulates values for a VectorInfo.
// NOTE: In VectorInfo, the max and min of an empty set is 0.0 by convention.
// In VectorInfoAccumulator, it is -kInfinity and kInfinity to simplify adding
// additional values.
class VectorInfoAccumulator {
public:
VectorInfoAccumulator() {}
// Move-only even though move and copy are the same cost, to help catch
// unintentional moves/copies (which are probably performance bugs).
VectorInfoAccumulator(const VectorInfoAccumulator&) = delete;
VectorInfoAccumulator& operator=(const VectorInfoAccumulator&) = delete;
VectorInfoAccumulator(VectorInfoAccumulator&&) = default;
VectorInfoAccumulator& operator=(VectorInfoAccumulator&&) = default;
void Add(double value);
void Add(const VectorInfoAccumulator& other);
explicit operator VectorInfo() const;
private:
int64_t num_infinite_ = 0;
int64_t num_zero_ = 0;
int64_t num_finite_nonzero_ = 0;
double max_ = -kInfinity;
double min_ = kInfinity;
double sum_ = 0.0;
double sum_squared_ = 0.0;
};
void VectorInfoAccumulator::Add(const double value) {
if (std::isinf(value)) {
++num_infinite_;
} else if (value == 0) {
++num_zero_;
} else {
++num_finite_nonzero_;
const double abs_value = std::abs(value);
max_ = std::max(max_, abs_value);
min_ = std::min(min_, abs_value);
sum_ += abs_value;
sum_squared_ += abs_value * abs_value;
}
}
void VectorInfoAccumulator::Add(const VectorInfoAccumulator& other) {
num_infinite_ += other.num_infinite_;
num_zero_ += other.num_zero_;
num_finite_nonzero_ += other.num_finite_nonzero_;
max_ = std::max(max_, other.max_);
min_ = std::min(min_, other.min_);
sum_ += other.sum_;
sum_squared_ += other.sum_squared_;
}
VectorInfoAccumulator::operator VectorInfo() const {
return VectorInfo{
.num_finite_nonzero = num_finite_nonzero_,
.num_infinite = num_infinite_,
.num_zero = num_zero_,
.largest = num_finite_nonzero_ > 0 ? max_ : 0.0,
.smallest = num_finite_nonzero_ > 0 ? min_ : 0.0,
.average = num_finite_nonzero_ + num_zero_ > 0
? sum_ / (num_finite_nonzero_ + num_zero_)
: std::numeric_limits<double>::quiet_NaN(),
.l2_norm = std::sqrt(sum_squared_),
};
}
VectorInfo CombineAccumulators(
const std::vector<VectorInfoAccumulator>& accumulators) {
VectorInfoAccumulator result;
for (const VectorInfoAccumulator& accumulator : accumulators) {
result.Add(accumulator);
}
return VectorInfo(result);
}
// TODO(b/223148482): Switch `vec` to const Eigen::Ref<const VectorXd> if/when
// Sharder supports Eigen::Ref, to avoid a copy when called on
// qp.Qp().objective_matrix->diagonal().
VectorInfo ComputeVectorInfo(const VectorXd& vec, const Sharder& sharder) {
std::vector<VectorInfoAccumulator> local_accumulator(sharder.NumShards());
sharder.ParallelForEachShard([&](const Sharder::Shard& shard) {
VectorInfoAccumulator shard_accumulator;
for (double element : shard(vec)) {
shard_accumulator.Add(element);
}
local_accumulator[shard.Index()] = std::move(shard_accumulator);
});
return CombineAccumulators(local_accumulator);
}
VectorInfo VariableBoundGapInfo(const VectorXd& lower_bounds,
const VectorXd& upper_bounds,
const Sharder& sharder) {
std::vector<VectorInfoAccumulator> local_accumulator(sharder.NumShards());
sharder.ParallelForEachShard([&](const Sharder::Shard& shard) {
VectorInfoAccumulator shard_accumulator;
for (double element : shard(upper_bounds) - shard(lower_bounds)) {
shard_accumulator.Add(element);
}
local_accumulator[shard.Index()] = std::move(shard_accumulator);
});
return CombineAccumulators(local_accumulator);
}
VectorInfo MatrixAbsElementInfo(
const SparseMatrix<double, ColMajor, int64_t>& matrix,
const Sharder& sharder) {
std::vector<VectorInfoAccumulator> local_accumulator(sharder.NumShards());
sharder.ParallelForEachShard([&](const Sharder::Shard& shard) {
VectorInfoAccumulator shard_accumulator;
const auto matrix_shard = shard(matrix);
for (int64_t col_idx = 0; col_idx < matrix_shard.outerSize(); ++col_idx) {
for (decltype(matrix_shard)::InnerIterator it(matrix_shard, col_idx); it;
++it) {
shard_accumulator.Add(it.value());
}
}
local_accumulator[shard.Index()] = std::move(shard_accumulator);
});
return CombineAccumulators(local_accumulator);
}
VectorInfo CombinedBoundsInfo(const VectorXd& rhs_upper_bounds,
const VectorXd& rhs_lower_bounds,
const Sharder& sharder,
const double infinite_bound_threshold =
std::numeric_limits<double>::infinity()) {
std::vector<VectorInfoAccumulator> local_accumulator(sharder.NumShards());
sharder.ParallelForEachShard([&](const Sharder::Shard& shard) {
VectorInfoAccumulator shard_accumulator;
const auto lb_shard = shard(rhs_lower_bounds);
const auto ub_shard = shard(rhs_upper_bounds);
for (int64_t i = 0; i < lb_shard.size(); ++i) {
shard_accumulator.Add(
CombineBounds(ub_shard[i], lb_shard[i], infinite_bound_threshold));
}
local_accumulator[shard.Index()] = std::move(shard_accumulator);
});
return CombineAccumulators(local_accumulator);
}
InfNormInfo ConstraintMatrixRowColInfo(
const SparseMatrix<double, ColMajor, int64_t>& constraint_matrix,
const SparseMatrix<double, ColMajor, int64_t>& constraint_matrix_transpose,
const Sharder& matrix_sharder, const Sharder& matrix_transpose_sharder,
const Sharder& primal_sharder, const Sharder& dual_sharder) {
VectorXd row_norms = ScaledColLInfNorm(
constraint_matrix_transpose,
/*col_scaling_vec=*/OnesVector(primal_sharder),
/*row_scaling_vec=*/OnesVector(dual_sharder), matrix_transpose_sharder);
VectorXd col_norms = ScaledColLInfNorm(
constraint_matrix,
/*row_scaling_vec=*/OnesVector(dual_sharder),
/*col_scaling_vec=*/OnesVector(primal_sharder), matrix_sharder);
return InfNormInfo{.row_norms = ComputeVectorInfo(row_norms, dual_sharder),
.col_norms = ComputeVectorInfo(col_norms, primal_sharder)};
}
} // namespace
QuadraticProgramStats ComputeStats(
const ShardedQuadraticProgram& qp,
const double infinite_constraint_bound_threshold) {
// Caution: if the constraint matrix is empty, elementwise operations
// (like .coeffs().maxCoeff() or .minCoeff()) will fail.
InfNormInfo cons_matrix_norm_info = ConstraintMatrixRowColInfo(
qp.Qp().constraint_matrix, qp.TransposedConstraintMatrix(),
qp.ConstraintMatrixSharder(), qp.TransposedConstraintMatrixSharder(),
qp.PrimalSharder(), qp.DualSharder());
VectorInfo cons_matrix_info = MatrixAbsElementInfo(
qp.Qp().constraint_matrix, qp.ConstraintMatrixSharder());
VectorInfo combined_bounds_info = CombinedBoundsInfo(
qp.Qp().constraint_lower_bounds, qp.Qp().constraint_upper_bounds,
qp.DualSharder(), infinite_constraint_bound_threshold);
VectorInfo obj_vec_info =
ComputeVectorInfo(qp.Qp().objective_vector, qp.PrimalSharder());
VectorInfo gaps_info =
VariableBoundGapInfo(qp.Qp().variable_lower_bounds,
qp.Qp().variable_upper_bounds, qp.PrimalSharder());
QuadraticProgramStats program_stats;
program_stats.set_num_variables(qp.PrimalSize());
program_stats.set_num_constraints(qp.DualSize());
program_stats.set_constraint_matrix_col_min_l_inf_norm(
cons_matrix_norm_info.col_norms.smallest);
program_stats.set_constraint_matrix_row_min_l_inf_norm(
cons_matrix_norm_info.row_norms.smallest);
program_stats.set_constraint_matrix_num_nonzeros(
cons_matrix_info.num_finite_nonzero);
program_stats.set_constraint_matrix_abs_max(cons_matrix_info.largest);
program_stats.set_constraint_matrix_abs_min(cons_matrix_info.smallest);
program_stats.set_constraint_matrix_abs_avg(cons_matrix_info.average);
program_stats.set_constraint_matrix_l2_norm(cons_matrix_info.l2_norm);
program_stats.set_combined_bounds_max(combined_bounds_info.largest);
program_stats.set_combined_bounds_min(combined_bounds_info.smallest);
program_stats.set_combined_bounds_avg(combined_bounds_info.average);
program_stats.set_combined_bounds_l2_norm(combined_bounds_info.l2_norm);
program_stats.set_variable_bound_gaps_num_finite(
gaps_info.num_finite_nonzero + gaps_info.num_zero);
program_stats.set_variable_bound_gaps_max(gaps_info.largest);
program_stats.set_variable_bound_gaps_min(gaps_info.smallest);
program_stats.set_variable_bound_gaps_avg(gaps_info.average);
program_stats.set_variable_bound_gaps_l2_norm(gaps_info.l2_norm);
program_stats.set_objective_vector_abs_max(obj_vec_info.largest);
program_stats.set_objective_vector_abs_min(obj_vec_info.smallest);
program_stats.set_objective_vector_abs_avg(obj_vec_info.average);
program_stats.set_objective_vector_l2_norm(obj_vec_info.l2_norm);
if (IsLinearProgram(qp.Qp())) {
program_stats.set_objective_matrix_num_nonzeros(0);
program_stats.set_objective_matrix_abs_max(0);
program_stats.set_objective_matrix_abs_min(0);
program_stats.set_objective_matrix_abs_avg(
std::numeric_limits<double>::quiet_NaN());
program_stats.set_objective_matrix_l2_norm(0);
} else {
VectorInfo obj_matrix_info = ComputeVectorInfo(
qp.Qp().objective_matrix->diagonal(), qp.PrimalSharder());
program_stats.set_objective_matrix_num_nonzeros(
obj_matrix_info.num_finite_nonzero);
program_stats.set_objective_matrix_abs_max(obj_matrix_info.largest);
program_stats.set_objective_matrix_abs_min(obj_matrix_info.smallest);
program_stats.set_objective_matrix_abs_avg(obj_matrix_info.average);
program_stats.set_objective_matrix_l2_norm(obj_matrix_info.l2_norm);
}
return program_stats;
}
namespace {
enum class ScalingNorm { kL2, kLInf };
// Divides the vector (componentwise) by the square root of the divisor,
// updating the vector in-place. If a component of the divisor is equal to zero,
// leaves the component of the vector unchanged. The Sharder should have the
// same size as the vector. For best performance the Sharder should have been
// created with the Sharder(int64_t, int, ThreadPool*) constructor.
void DivideBySquareRootOfDivisor(const VectorXd& divisor,
const Sharder& sharder, VectorXd& vector) {
sharder.ParallelForEachShard([&](const Sharder::Shard& shard) {
auto vec_shard = shard(vector);
const auto divisor_shard = shard(divisor);
for (int64_t index = 0; index < vec_shard.size(); ++index) {
if (divisor_shard[index] != 0) {
vec_shard[index] /= std::sqrt(divisor_shard[index]);
}
}
});
}
void ApplyScalingIterationsForNorm(const ShardedQuadraticProgram& sharded_qp,
const int num_iterations,
const ScalingNorm norm,
VectorXd& row_scaling_vec,
VectorXd& col_scaling_vec) {
const QuadraticProgram& qp = sharded_qp.Qp();
const int64_t num_col = qp.constraint_matrix.cols();
const int64_t num_row = qp.constraint_matrix.rows();
CHECK_EQ(num_col, col_scaling_vec.size());
CHECK_EQ(num_row, row_scaling_vec.size());
for (int i = 0; i < num_iterations; ++i) {
VectorXd col_norm;
VectorXd row_norm;
switch (norm) {
case ScalingNorm::kL2: {
col_norm = ScaledColL2Norm(qp.constraint_matrix, row_scaling_vec,
col_scaling_vec,
sharded_qp.ConstraintMatrixSharder());
row_norm = ScaledColL2Norm(
sharded_qp.TransposedConstraintMatrix(), col_scaling_vec,
row_scaling_vec, sharded_qp.TransposedConstraintMatrixSharder());
break;
}
case ScalingNorm::kLInf: {
col_norm = ScaledColLInfNorm(qp.constraint_matrix, row_scaling_vec,
col_scaling_vec,
sharded_qp.ConstraintMatrixSharder());
row_norm = ScaledColLInfNorm(
sharded_qp.TransposedConstraintMatrix(), col_scaling_vec,
row_scaling_vec, sharded_qp.TransposedConstraintMatrixSharder());
break;
}
}
DivideBySquareRootOfDivisor(col_norm, sharded_qp.PrimalSharder(),
col_scaling_vec);
DivideBySquareRootOfDivisor(row_norm, sharded_qp.DualSharder(),
row_scaling_vec);
}
}
} // namespace
void LInfRuizRescaling(const ShardedQuadraticProgram& sharded_qp,
const int num_iterations, VectorXd& row_scaling_vec,
VectorXd& col_scaling_vec) {
ApplyScalingIterationsForNorm(sharded_qp, num_iterations, ScalingNorm::kLInf,
row_scaling_vec, col_scaling_vec);
}
void L2NormRescaling(const ShardedQuadraticProgram& sharded_qp,
VectorXd& row_scaling_vec, VectorXd& col_scaling_vec) {
ApplyScalingIterationsForNorm(sharded_qp, /*num_iterations=*/1,
ScalingNorm::kL2, row_scaling_vec,
col_scaling_vec);
}
ScalingVectors ApplyRescaling(const RescalingOptions& rescaling_options,
ShardedQuadraticProgram& sharded_qp) {
ScalingVectors scaling{
.row_scaling_vec = OnesVector(sharded_qp.DualSharder()),
.col_scaling_vec = OnesVector(sharded_qp.PrimalSharder())};
bool do_rescale = false;
if (rescaling_options.l_inf_ruiz_iterations > 0) {
do_rescale = true;
LInfRuizRescaling(sharded_qp, rescaling_options.l_inf_ruiz_iterations,
scaling.row_scaling_vec, scaling.col_scaling_vec);
}
if (rescaling_options.l2_norm_rescaling) {
do_rescale = true;
L2NormRescaling(sharded_qp, scaling.row_scaling_vec,
scaling.col_scaling_vec);
}
if (do_rescale) {
sharded_qp.RescaleQuadraticProgram(scaling.col_scaling_vec,
scaling.row_scaling_vec);
}
return scaling;
}
LagrangianPart ComputePrimalGradient(const ShardedQuadraticProgram& sharded_qp,
const VectorXd& primal_solution,
const VectorXd& dual_product) {
LagrangianPart result{.gradient = VectorXd(sharded_qp.PrimalSize())};
const QuadraticProgram& qp = sharded_qp.Qp();
VectorXd value_parts(sharded_qp.PrimalSharder().NumShards());
sharded_qp.PrimalSharder().ParallelForEachShard(
[&](const Sharder::Shard& shard) {
if (IsLinearProgram(qp)) {
shard(result.gradient) =
shard(qp.objective_vector) - shard(dual_product);
value_parts[shard.Index()] =
shard(primal_solution).dot(shard(result.gradient));
} else {
// Note: using auto instead of VectorXd for the type of
// objective_product causes eigen to defer the matrix product until it
// is used (twice).
const VectorXd objective_product =
shard(*qp.objective_matrix) * shard(primal_solution);
shard(result.gradient) = shard(qp.objective_vector) +
objective_product - shard(dual_product);
value_parts[shard.Index()] =
shard(primal_solution)
.dot(shard(result.gradient) - 0.5 * objective_product);
}
});
result.value = value_parts.sum();
return result;
}
double DualSubgradientCoefficient(const double constraint_lower_bound,
const double constraint_upper_bound,
const double dual,
const double primal_product) {
if (dual < 0.0) {
return constraint_upper_bound;
} else if (dual > 0.0) {
return constraint_lower_bound;
} else if (std::isfinite(constraint_lower_bound) &&
std::isfinite(constraint_upper_bound)) {
if (primal_product < constraint_lower_bound) {
return constraint_lower_bound;
} else if (primal_product > constraint_upper_bound) {
return constraint_upper_bound;
} else {
return primal_product;
}
} else if (std::isfinite(constraint_lower_bound)) {
return constraint_lower_bound;
} else if (std::isfinite(constraint_upper_bound)) {
return constraint_upper_bound;
} else {
return 0.0;
}
}
LagrangianPart ComputeDualGradient(const ShardedQuadraticProgram& sharded_qp,
const VectorXd& dual_solution,
const VectorXd& primal_product) {
LagrangianPart result{.gradient = VectorXd(sharded_qp.DualSize())};
const QuadraticProgram& qp = sharded_qp.Qp();
VectorXd value_parts(sharded_qp.DualSharder().NumShards());
sharded_qp.DualSharder().ParallelForEachShard(
[&](const Sharder::Shard& shard) {
const auto constraint_lower_bounds = shard(qp.constraint_lower_bounds);
const auto constraint_upper_bounds = shard(qp.constraint_upper_bounds);
const auto dual_solution_shard = shard(dual_solution);
auto dual_gradient_shard = shard(result.gradient);
const auto primal_product_shard = shard(primal_product);
double value_sum = 0.0;
for (int64_t i = 0; i < dual_gradient_shard.size(); ++i) {
dual_gradient_shard[i] = DualSubgradientCoefficient(
constraint_lower_bounds[i], constraint_upper_bounds[i],
dual_solution_shard[i], primal_product_shard[i]);
value_sum += dual_gradient_shard[i] * dual_solution_shard[i];
}
value_parts[shard.Index()] = value_sum;
dual_gradient_shard -= primal_product_shard;
});
result.value = value_parts.sum();
return result;
}
namespace {
using ::Eigen::ColMajor;
using ::Eigen::SparseMatrix;
// Scales a vector (in-place) to have norm 1, unless it has norm 0 (in which
// case it is left unscaled). Returns the norm of the input vector.
double NormalizeVector(const Sharder& sharder, VectorXd& vector) {
const double norm = Norm(vector, sharder);
if (norm != 0.0) {
sharder.ParallelForEachShard(
[&](const Sharder::Shard& shard) { shard(vector) /= norm; });
}
return norm;
}
// Estimates the probability that the power method, after k iterations, has
// relative error > epsilon. This is based on Theorem 4.1(a) (on page 13) from
// "Estimating the Largest Eigenvalue by the Power and Lanczos Algorithms with a
// Random Start"
// https://pdfs.semanticscholar.org/2b2e/a941e55e5fa2ee9d8f4ff393c14482051143.pdf
double PowerMethodFailureProbability(int64_t dimension, double epsilon, int k) {
if (k < 2 || epsilon <= 0.0) {
// The theorem requires epsilon > 0 and k >= 2.
return 1.0;
}
return std::min(0.824, 0.354 / (epsilon * (k - 1))) * std::sqrt(dimension) *
std::pow(1.0 - epsilon, k - 0.5);
}
SingularValueAndIterations EstimateMaximumSingularValue(
const SparseMatrix<double, ColMajor, int64_t>& matrix,
const SparseMatrix<double, ColMajor, int64_t>& matrix_transpose,
const std::optional<VectorXd>& active_set_indicator,
const std::optional<VectorXd>& transpose_active_set_indicator,
const Sharder& matrix_sharder, const Sharder& matrix_transpose_sharder,
const Sharder& primal_vector_sharder, const Sharder& dual_vector_sharder,
const double desired_relative_error, const double failure_probability,
std::mt19937& mt_generator) {
const int64_t dimension = matrix.cols();
VectorXd eigenvector(dimension);
// Even though it will be slower, we initialize eigenvector sequentially so
// that the result doesn't depend on the number of threads.
for (double& entry : eigenvector) {
entry = absl::Gaussian<double>(mt_generator);
}
if (active_set_indicator.has_value()) {
CoefficientWiseProductInPlace(*active_set_indicator, primal_vector_sharder,
eigenvector);
}
NormalizeVector(primal_vector_sharder, eigenvector);
double eigenvalue_estimate = 0.0;
int num_iterations = 0;
// The maximum singular value of A is the square root of the maximum
// eigenvalue of A^T A. epsilon is the relative error needed for the maximum
// eigenvalue of A^T A that gives desired_relative_error for the maximum
// singular value of A.
const double epsilon = 1.0 - MathUtil::Square(1.0 - desired_relative_error);
while (PowerMethodFailureProbability(dimension, epsilon, num_iterations) >
failure_probability) {
VectorXd dual_eigenvector = TransposedMatrixVectorProduct(
matrix_transpose, eigenvector, matrix_transpose_sharder);
if (transpose_active_set_indicator.has_value()) {
CoefficientWiseProductInPlace(*transpose_active_set_indicator,
dual_vector_sharder, dual_eigenvector);
}
VectorXd next_eigenvector =
TransposedMatrixVectorProduct(matrix, dual_eigenvector, matrix_sharder);
if (active_set_indicator.has_value()) {
CoefficientWiseProductInPlace(*active_set_indicator,
primal_vector_sharder, next_eigenvector);
}
eigenvalue_estimate =
Dot(eigenvector, next_eigenvector, primal_vector_sharder);
eigenvector = std::move(next_eigenvector);
++num_iterations;
const double primal_norm =
NormalizeVector(primal_vector_sharder, eigenvector);
VLOG(1) << "Iteration " << num_iterations << " singular value estimate "
<< std::sqrt(eigenvalue_estimate) << " primal norm " << primal_norm;
}
return SingularValueAndIterations{
.singular_value = std::sqrt(eigenvalue_estimate),
.num_iterations = num_iterations,
.estimated_relative_error = desired_relative_error};
}
// Given a primal solution, compute a {0, 1}-valued vector that is nonzero in
// all the coordinates that are not saturating the primal variable bounds.
VectorXd ComputePrimalActiveSetIndicator(
const ShardedQuadraticProgram& sharded_qp,
const VectorXd& primal_solution) {
VectorXd indicator(sharded_qp.PrimalSize());
sharded_qp.PrimalSharder().ParallelForEachShard(
[&](const Sharder::Shard& shard) {
const auto lower_bound_shard =
shard(sharded_qp.Qp().variable_lower_bounds);
const auto upper_bound_shard =
shard(sharded_qp.Qp().variable_upper_bounds);
const auto primal_solution_shard = shard(primal_solution);
auto indicator_shard = shard(indicator);
const int64_t shard_size =
sharded_qp.PrimalSharder().ShardSize(shard.Index());
for (int64_t i = 0; i < shard_size; ++i) {
if ((primal_solution_shard[i] == lower_bound_shard[i]) ||
(primal_solution_shard[i] == upper_bound_shard[i])) {
indicator_shard[i] = 0.0;
} else {
indicator_shard[i] = 1.0;
}
}
});
return indicator;
}
// Like ComputePrimalActiveSetIndicator(sharded_qp, primal_solution), but this
// time using the implicit bounds on the dual variable.
VectorXd ComputeDualActiveSetIndicator(
const ShardedQuadraticProgram& sharded_qp, const VectorXd& dual_solution) {
VectorXd indicator(sharded_qp.DualSize());
sharded_qp.DualSharder().ParallelForEachShard(
[&](const Sharder::Shard& shard) {
const auto lower_bound_shard =
shard(sharded_qp.Qp().constraint_lower_bounds);
const auto upper_bound_shard =
shard(sharded_qp.Qp().constraint_upper_bounds);
const auto dual_solution_shard = shard(dual_solution);
auto indicator_shard = shard(indicator);
const int64_t shard_size =
sharded_qp.DualSharder().ShardSize(shard.Index());
for (int64_t i = 0; i < shard_size; ++i) {
if (dual_solution_shard[i] == 0.0 &&
(std::isinf(lower_bound_shard[i]) ||
std::isinf(upper_bound_shard[i]))) {
indicator_shard[i] = 0.0;
} else {
indicator_shard[i] = 1.0;
}
}
});
return indicator;
}
} // namespace
SingularValueAndIterations EstimateMaximumSingularValueOfConstraintMatrix(
const ShardedQuadraticProgram& sharded_qp,
const std::optional<VectorXd>& primal_solution,
const std::optional<VectorXd>& dual_solution,
const double desired_relative_error, const double failure_probability,
std::mt19937& mt_generator) {
std::optional<VectorXd> primal_active_set_indicator;
std::optional<VectorXd> dual_active_set_indicator;
if (primal_solution.has_value()) {
primal_active_set_indicator =
ComputePrimalActiveSetIndicator(sharded_qp, *primal_solution);
}
if (dual_solution.has_value()) {
dual_active_set_indicator =
ComputeDualActiveSetIndicator(sharded_qp, *dual_solution);
}
return EstimateMaximumSingularValue(
sharded_qp.Qp().constraint_matrix,
sharded_qp.TransposedConstraintMatrix(), primal_active_set_indicator,
dual_active_set_indicator, sharded_qp.ConstraintMatrixSharder(),
sharded_qp.TransposedConstraintMatrixSharder(),
sharded_qp.PrimalSharder(), sharded_qp.DualSharder(),
desired_relative_error, failure_probability, mt_generator);
}
bool HasValidBounds(const ShardedQuadraticProgram& sharded_qp) {
const QuadraticProgram& qp = sharded_qp.Qp();
const bool constraint_bounds_valid =
sharded_qp.DualSharder().ParallelTrueForAllShards(
[&](const Sharder::Shard& shard) {
return (shard(qp.constraint_lower_bounds).array() <=
shard(qp.constraint_upper_bounds).array())
.all();
});
const bool variable_bounds_valid =
sharded_qp.PrimalSharder().ParallelTrueForAllShards(
[&](const Sharder::Shard& shard) {
return (shard(qp.variable_lower_bounds).array() <=
shard(qp.variable_upper_bounds).array())
.all();
});
return constraint_bounds_valid && variable_bounds_valid;
}
void ProjectToPrimalVariableBounds(const ShardedQuadraticProgram& sharded_qp,
VectorXd& primal) {
sharded_qp.PrimalSharder().ParallelForEachShard(
[&](const Sharder::Shard& shard) {
const QuadraticProgram& qp = sharded_qp.Qp();
shard(primal) = shard(primal)
.cwiseMin(shard(qp.variable_upper_bounds))
.cwiseMax(shard(qp.variable_lower_bounds));
});
}
void ProjectToDualVariableBounds(const ShardedQuadraticProgram& sharded_qp,
VectorXd& dual) {
const QuadraticProgram& qp = sharded_qp.Qp();
sharded_qp.DualSharder().ParallelForEachShard(
[&](const Sharder::Shard& shard) {
const auto lower_bound_shard = shard(qp.constraint_lower_bounds);
const auto upper_bound_shard = shard(qp.constraint_upper_bounds);
auto dual_shard = shard(dual);
for (int64_t i = 0; i < dual_shard.size(); ++i) {
if (!std::isfinite(upper_bound_shard[i])) {
dual_shard[i] = std::max(dual_shard[i], 0.0);
}
if (!std::isfinite(lower_bound_shard[i])) {
dual_shard[i] = std::min(dual_shard[i], 0.0);
}
}
});
}
} // namespace operations_research::pdlp