forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
EarlinessTardinessCostSampleSat.java
95 lines (82 loc) · 3.33 KB
/
EarlinessTardinessCostSampleSat.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package com.google.ortools.sat.samples;
import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverSolutionCallback;
import com.google.ortools.sat.DecisionStrategyProto;
import com.google.ortools.sat.IntVar;
import com.google.ortools.sat.LinearExpr;
import com.google.ortools.sat.SatParameters;
/** Encode the piecewise linear expression. */
public class EarlinessTardinessCostSampleSat {
public static void main(String[] args) throws Exception {
Loader.loadNativeLibraries();
long earlinessDate = 5;
long earlinessCost = 8;
long latenessDate = 15;
long latenessCost = 12;
// Create the CP-SAT model.
CpModel model = new CpModel();
// Declare our primary variable.
IntVar x = model.newIntVar(0, 20, "x");
// Create the expression variable and implement the piecewise linear function.
//
// \ /
// \______/
// ed ld
//
long largeConstant = 1000;
IntVar expr = model.newIntVar(0, largeConstant, "expr");
// Link together expr and the 3 segment.
// First segment: y == earlinessCost * (earlinessDate - x).
// Second segment: y = 0
// Third segment: y == latenessCost * (x - latenessDate).
model.addMaxEquality(expr,
new LinearExpr[] {LinearExpr.newBuilder()
.addTerm(x, -earlinessCost)
.add(earlinessCost * earlinessDate)
.build(),
LinearExpr.constant(0),
LinearExpr.newBuilder()
.addTerm(x, latenessCost)
.add(-latenessCost * latenessDate)
.build()});
// Search for x values in increasing order.
model.addDecisionStrategy(new IntVar[] {x},
DecisionStrategyProto.VariableSelectionStrategy.CHOOSE_FIRST,
DecisionStrategyProto.DomainReductionStrategy.SELECT_MIN_VALUE);
// Create the solver.
CpSolver solver = new CpSolver();
// Force the solver to follow the decision strategy exactly.
solver.getParameters().setSearchBranching(SatParameters.SearchBranching.FIXED_SEARCH);
// Tell the solver to enumerate all solutions.
solver.getParameters().setEnumerateAllSolutions(true);
// Solve the problem with the printer callback.
solver.solve(model, new CpSolverSolutionCallback() {
public CpSolverSolutionCallback init(IntVar[] variables) {
variableArray = variables;
return this;
}
@Override
public void onSolutionCallback() {
for (IntVar v : variableArray) {
System.out.printf("%s=%d ", v.getName(), value(v));
}
System.out.println();
}
private IntVar[] variableArray;
}.init(new IntVar[] {x, expr}));
}
}