forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
minimal_jobshop_sat.py
executable file
·156 lines (135 loc) · 5.56 KB
/
minimal_jobshop_sat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#!/usr/bin/env python3
# Copyright 2010-2022 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# [START program]
"""Minimal jobshop example."""
# [START import]
import collections
from ortools.sat.python import cp_model
# [END import]
def main():
"""Minimal jobshop problem."""
# Data.
# [START data]
jobs_data = [ # task = (machine_id, processing_time).
[(0, 3), (1, 2), (2, 2)], # Job0
[(0, 2), (2, 1), (1, 4)], # Job1
[(1, 4), (2, 3)] # Job2
]
machines_count = 1 + max(task[0] for job in jobs_data for task in job)
all_machines = range(machines_count)
# Computes horizon dynamically as the sum of all durations.
horizon = sum(task[1] for job in jobs_data for task in job)
# [END data]
# Create the model.
# [START model]
model = cp_model.CpModel()
# [END model]
# [START variables]
# Named tuple to store information about created variables.
task_type = collections.namedtuple('task_type', 'start end interval')
# Named tuple to manipulate solution information.
assigned_task_type = collections.namedtuple('assigned_task_type',
'start job index duration')
# Creates job intervals and add to the corresponding machine lists.
all_tasks = {}
machine_to_intervals = collections.defaultdict(list)
for job_id, job in enumerate(jobs_data):
for task_id, task in enumerate(job):
machine = task[0]
duration = task[1]
suffix = '_%i_%i' % (job_id, task_id)
start_var = model.NewIntVar(0, horizon, 'start' + suffix)
end_var = model.NewIntVar(0, horizon, 'end' + suffix)
interval_var = model.NewIntervalVar(start_var, duration, end_var,
'interval' + suffix)
all_tasks[job_id, task_id] = task_type(start=start_var,
end=end_var,
interval=interval_var)
machine_to_intervals[machine].append(interval_var)
# [END variables]
# [START constraints]
# Create and add disjunctive constraints.
for machine in all_machines:
model.AddNoOverlap(machine_to_intervals[machine])
# Precedences inside a job.
for job_id, job in enumerate(jobs_data):
for task_id in range(len(job) - 1):
model.Add(all_tasks[job_id, task_id +
1].start >= all_tasks[job_id, task_id].end)
# [END constraints]
# [START objective]
# Makespan objective.
obj_var = model.NewIntVar(0, horizon, 'makespan')
model.AddMaxEquality(obj_var, [
all_tasks[job_id, len(job) - 1].end
for job_id, job in enumerate(jobs_data)
])
model.Minimize(obj_var)
# [END objective]
# Creates the solver and solve.
# [START solve]
solver = cp_model.CpSolver()
status = solver.Solve(model)
# [END solve]
# [START print_solution]
if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
print('Solution:')
# Create one list of assigned tasks per machine.
assigned_jobs = collections.defaultdict(list)
for job_id, job in enumerate(jobs_data):
for task_id, task in enumerate(job):
machine = task[0]
assigned_jobs[machine].append(
assigned_task_type(start=solver.Value(
all_tasks[job_id, task_id].start),
job=job_id,
index=task_id,
duration=task[1]))
# Create per machine output lines.
output = ''
for machine in all_machines:
# Sort by starting time.
assigned_jobs[machine].sort()
sol_line_tasks = 'Machine ' + str(machine) + ': '
sol_line = ' '
for assigned_task in assigned_jobs[machine]:
name = 'job_%i_task_%i' % (assigned_task.job,
assigned_task.index)
# Add spaces to output to align columns.
sol_line_tasks += '%-15s' % name
start = assigned_task.start
duration = assigned_task.duration
sol_tmp = '[%i,%i]' % (start, start + duration)
# Add spaces to output to align columns.
sol_line += '%-15s' % sol_tmp
sol_line += '\n'
sol_line_tasks += '\n'
output += sol_line_tasks
output += sol_line
# Finally print the solution found.
print(f'Optimal Schedule Length: {solver.ObjectiveValue()}')
print(output)
else:
print('No solution found.')
# [END print_solution]
# Statistics.
# [START statistics]
print('\nStatistics')
print(' - conflicts: %i' % solver.NumConflicts())
print(' - branches : %i' % solver.NumBranches())
print(' - wall time: %f s' % solver.WallTime())
# [END statistics]
if __name__ == '__main__':
main()
# [END program]