forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
monoid_operation_tree.h
251 lines (211 loc) · 8.08 KB
/
monoid_operation_tree.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OR_TOOLS_UTIL_MONOID_OPERATION_TREE_H_
#define OR_TOOLS_UTIL_MONOID_OPERATION_TREE_H_
#include <algorithm>
#include <string>
#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/base/macros.h"
namespace operations_research {
// A monoid is an algebraic structure consisting of a set S with an associative
// binary operation * :S x S -> S that has an identity element.
// Associative means a*(b*c) = (a*b)*c for all a,b,c in S.
// An identity element is an element e in S such that for all a in S,
// e*a = a*e = a.
// See http://en.wikipedia.org/wiki/Monoid for more details.
//
// A MonoidOperationTree is a data structure that maintains a product
// a_1 * a_2 * ... * a_n for a given (fixed) n, and that supports the
// following functions:
// - Setting the k-th operand to a given value in O(log n) calls to the *
// operation
// - Querying the result in O(1)
//
// Note that the monoid is not required to be commutative.
//
// The parameter class T represents an element of the set S.
// It must:
// * Have a public no-argument constructor producing the identity element.
// * Have a = operator method that sets its value to the given one.
// * Have a Compute(const T& left, const T& right) method that sets its value
// to the result of the binary operation for the two given operands.
// * Have a string DebugString() const method.
//
// Possible use cases are:
// * Maintain a sum or a product of doubles, with a guarantee that the queried
// result is independent of the order of past numerical issues
// * Maintain a product of identically sized square matrices, which is an
// example of use with non-commutative operations.
template <class T>
class MonoidOperationTree {
public:
// Constructs a MonoidOperationTree able to store 'size' operands.
explicit MonoidOperationTree(int size);
// Returns the root of the tree, containing the result of the operation.
const T& result() const { return *result_; }
// Resets the argument of given index.
void Reset(int argument_index);
// Sets the argument of given index.
void Set(int argument_index, const T& argument);
// Resets all arguments.
void Clear();
// Returns the leaf node corresponding to the given argument index.
const T& GetOperand(int argument_index) const {
return nodes_[PositionOfLeaf(argument_index)];
}
// Dive down a branch of the operation tree, and then come back up.
template <class Diver>
void DiveInTree(Diver* const diver) const {
DiveInTree(0, diver);
}
std::string DebugString() const;
private:
// Computes the index of the first leaf for the given size.
static int ComputeLeafOffset(int size);
// Computes the total number of nodes we need to store non-leaf nodes and
// leaf nodes.
static int ComputeNumberOfNodes(int leaf_offset);
// Computes the whole path from the node of given position up to the root,
// excluding the bottom node.
void ComputeAbove(int position);
// Computes the node of given position, and no other.
void Compute(int position);
// Returns the position of the leaf node of given index.
int PositionOfLeaf(int index) const { return leaf_offset_ + index; }
// Returns true if the node of given position is a leaf.
bool IsLeaf(int position) const { return position >= leaf_offset_; }
// Returns the index of the argument stored in the node of given position.
int ArgumentIndexOfLeafPosition(int position) const {
DCHECK(IsLeaf(position));
return position - leaf_offset_;
}
template <class Diver>
void DiveInTree(int position, Diver* diver) const;
static int father(int pos) { return (pos - 1) >> 1; }
static int left(int pos) { return (pos << 1) + 1; }
static int right(int pos) { return (pos + 1) << 1; }
// The number of arguments that can be stored in this tree. That is, the
// number of used leaves. (There may be unused leaves, too)
const int size_;
// The index of the first leaf.
const int leaf_offset_;
// Number of nodes, both non-leaves and leaves.
const int num_nodes_;
// All the nodes, both non-leaves and leaves.
std::vector<T> nodes_;
// A pointer to the root node
T const* result_;
DISALLOW_COPY_AND_ASSIGN(MonoidOperationTree);
};
// --------------------------------------------------------------------- //
// Implementation
// --------------------------------------------------------------------- //
template <class T>
int MonoidOperationTree<T>::ComputeLeafOffset(int size) {
int smallest_pow_two_not_less_than_size = 1;
while (smallest_pow_two_not_less_than_size < size) {
smallest_pow_two_not_less_than_size <<= 1;
}
return std::max(1, smallest_pow_two_not_less_than_size - 1);
}
template <class T>
int MonoidOperationTree<T>::ComputeNumberOfNodes(int leaf_offset) {
// leaf_offset should be a power of 2 minus 1.
DCHECK_EQ(0, (leaf_offset) & (leaf_offset + 1));
const int num_leaves = leaf_offset + 1;
const int num_nodes = leaf_offset + num_leaves;
DCHECK_GE(num_nodes, 3); // We need at least the root and its 2 children
return num_nodes;
}
template <class T>
MonoidOperationTree<T>::MonoidOperationTree(int size)
: size_(size),
leaf_offset_(ComputeLeafOffset(size)),
num_nodes_(ComputeNumberOfNodes(leaf_offset_)),
nodes_(num_nodes_, T()),
result_(&(nodes_[0])) {}
template <class T>
void MonoidOperationTree<T>::Clear() {
const int size = nodes_.size();
nodes_.assign(size, T());
}
template <class T>
void MonoidOperationTree<T>::Reset(int argument_index) {
Set(argument_index, T());
}
template <class T>
void MonoidOperationTree<T>::Set(int argument_index, const T& argument) {
CHECK_LT(argument_index, size_);
const int position = leaf_offset_ + argument_index;
nodes_[position] = argument;
ComputeAbove(position);
}
template <class T>
void MonoidOperationTree<T>::ComputeAbove(int position) {
int pos = father(position);
while (pos > 0) {
Compute(pos);
pos = father(pos);
}
Compute(0);
}
template <class T>
void MonoidOperationTree<T>::Compute(int position) {
const T& left_child = nodes_[left(position)];
const T& right_child = nodes_[right(position)];
nodes_[position].Compute(left_child, right_child);
}
template <class T>
std::string MonoidOperationTree<T>::DebugString() const {
std::string out;
int layer = 0;
for (int i = 0; i < num_nodes_; ++i) {
if (((i + 1) & i) == 0) {
// New layer
absl::StrAppendFormat(&out, "-------------- Layer %d ---------------\n",
layer);
++layer;
}
absl::StrAppendFormat(&out, "Position %d: %s\n", i,
nodes_[i].DebugString());
}
return out;
}
template <class T>
template <class Diver>
void MonoidOperationTree<T>::DiveInTree(int position, Diver* diver) const {
// Are we at a leaf?
if (IsLeaf(position)) {
const int index = ArgumentIndexOfLeafPosition(position);
const T& argument = nodes_[position];
diver->OnArgumentReached(index, argument);
} else {
const T& current = nodes_[position];
const T& left_child = nodes_[left(position)];
const T& right_child = nodes_[right(position)];
if (diver->ChooseGoLeft(current, left_child, right_child)) {
// Go left
DiveInTree(left(position), diver);
// Come back up
diver->OnComeBackFromLeft(current, left_child, right_child);
} else {
// Go right
DiveInTree(right(position), diver);
// Come back up
diver->OnComeBackFromRight(current, left_child, right_child);
}
}
}
} // namespace operations_research
#endif // OR_TOOLS_UTIL_MONOID_OPERATION_TREE_H_