-
Notifications
You must be signed in to change notification settings - Fork 0
/
figdef3.tex
590 lines (513 loc) · 28.5 KB
/
figdef3.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
\begin{comment}
python -m ibeis.scripts.gen_cand_expts --exec-parse_latex_comments_for_commmands --fname figdef3.tex
\end{comment}
\begin{comment}
ibeis ChipMatch.show_ranked_matches --qaid 79 --db PZ_MTEST --show --heatmask=True
ibeis ChipMatch.show_ranked_matches --qaid 79 --db PZ_MTEST \
--clip-top=4 --colorbar_=False --show_aid=False --score_precision=2 --stack_larger=True --noshow_truth --draw_lbl=False --stack_side=True --show_timedelta=False \
--dpath ~/latex/crall-thesis-2017 --save figures3/rankedmatches.jpg \
--diskshow --saveparts --dpi=300 --figsize=14,14
\end{comment}
\newcommand{\rankedmatches}{
\begin{figure}[h]
\centering
\begin{subfigure}[h]{0.7\textwidth}\centering\includegraphics[width=\textwidth]{figures3/rankedmatchesA.jpg}\caption{}\label{sub:rankedmatchesa}\end{subfigure}
\begin{subfigure}[h]{0.7\textwidth}\centering\includegraphics[width=\textwidth]{figures3/rankedmatchesB.jpg}\caption{}\label{sub:rankedmatchesb}\end{subfigure}
\begin{subfigure}[h]{0.7\textwidth}\centering\includegraphics[width=\textwidth]{figures3/rankedmatchesC.jpg}\caption{}\label{sub:rankedmatchesc}\end{subfigure}
\captext[\caplbl{rankedmatches}Ranked matches]{
% ---
These are the top three results from the ranking algorithm.
In each row, the query annotation is on the left and the exemplars of the matched name are on the right.
Notice that the number of exemplars for each database name varies.
The top-ranked match in \cref{sub:rankedmatchesa} is correct.
The other ranks in \cref{sub:rankedmatchesb,sub:rankedmatchesc} are incorrect.
The overall matching score is shown on the top of each result.
The feature correspondences are overlaid on each result and colored by score.
% ---
}
\label{fig:rankedmatches}
\end{figure}
}
\begin{comment}
python -m ibeis.viz.viz_name --test-show_multiple_chips --db GZ_Master1 --aids 2811 2810 --show --notitle --no-inimage --dpath ~/latex/crall-candidacy-2015/ --save figures3/SceneryMatch.jpg --diskshow --clipwhite --figsize=12,6 --dpi 300
python -m ibeis.viz.viz_name --test-show_multiple_chips --db GZ_Master1 --tags SceneryMatch --index 5 --show --notitle --no-inimage
python -m ibeis.scripts.specialdraw simple_vsone_matches \
--db GZ_Master1 --aids=2811,2810 \
--figsize=12,6 --dpi 300 \
--dpath ~/latex/crall-thesis-2017/ --save figures3/SceneryMatch2.jpg \
--diskshow
\end{comment}
\newcommand{\SceneryMatch}{
\begin{figure}[ht!]
\centering
\includegraphics[width=\textwidth]{figures3/SceneryMatch2.jpg}
\captext[A scenery match]{
% ---
This is an example of two different animals appearing in front of the same distinctive background, illustrating
the importance of background downweighting.
The matching regions are highlighted.
% ---
}
\label{fig:SceneryMatch}
\end{figure}
}
\begin{comment}
python -m ibeis.scripts.specialdraw featweight_fig --db PZ_MTEST --aid=1 \
--dpath ~/latex/crall-thesis-2017/ --save figures3/fgweight.png \
--figsize=12,3 --dpi=300 --saveparts --diskshow
\end{comment}
\newcommand{\fgweight}{
\begin{figure}[ht!]
\centering
\begin{subfigure}[h]{0.32\textwidth}\centering\includegraphics[width=\textwidth]{figures3/fgweightA.png}\caption{}\label{sub:fgweightA}\end{subfigure}
\begin{subfigure}[h]{0.32\textwidth}\centering\includegraphics[width=\textwidth]{figures3/fgweightB.png}\caption{}\label{sub:fgweightB}\end{subfigure}
\begin{subfigure}[h]{0.32\textwidth}\centering\includegraphics[width=\textwidth]{figures3/fgweightC.png}\caption{}\label{sub:fgweightC}\end{subfigure}
\captext[Foregroundness weights]{
% ---
\Cref{sub:fgweightA} shows the annotation's cropped chip.
This chip is passed to the species detector.
\Cref{sub:fgweightB} shows the species detector outputs an intensity image indicating the likelihood that each
pixel belongs to the foreground.
\Cref{sub:fgweightC} shows the weighted sum of the intensity under each feature is used as that feature's
foregroundness score.
} \label{fig:fgweight}
\end{figure}
}
\begin{comment}
python -m ibeis.viz.viz_nearest_descriptors --test-show_nearest_descriptors --db PZ_MTEST --qaid 3 --qfx 1062 --usetex --texknormplot --diskshow --saveparts --save figures3/knorm.jpg --dpi=300 --figsize 5 8 --dpath ~/latex/crall-thesis-2017/ --hspace .8 --top=1.0 --labelsize=12 --reshape 8 --show
\end{comment}
\newcommand{\knorm}{
\begin{figure}[ht!]
\centering
\begin{subfigure}[h]{0.2\textwidth}\centering\includegraphics[width=\textwidth]{figures3/knormA.jpg}\caption{}\label{sub:knorma}\end{subfigure}%
\begin{subfigure}[h]{0.2\textwidth}\centering\includegraphics[width=\textwidth]{figures3/knormC.jpg}\caption{}\label{sub:knormb}\end{subfigure}%
\begin{subfigure}[h]{0.2\textwidth}\centering\includegraphics[width=\textwidth]{figures3/knormE.jpg}\caption{}\label{sub:knormc}\end{subfigure}%
\begin{subfigure}[h]{0.2\textwidth}\centering\includegraphics[width=\textwidth]{figures3/knormG.jpg}\caption{}\label{sub:knormd}\end{subfigure}%
\begin{subfigure}[h]{0.2\textwidth}\centering\includegraphics[width=\textwidth]{figures3/knormI.jpg}\caption{}\label{sub:knorme}\end{subfigure}
\begin{subfigure}[h]{0.2\textwidth}\centering\includegraphics[height=120pt]{figures3/knormB.jpg}\caption{}\label{sub:knormf}\end{subfigure}%
\begin{subfigure}[h]{0.2\textwidth}\centering\includegraphics[height=120pt]{figures3/knormD.jpg}\caption{}\label{sub:knormg}\end{subfigure}%
\begin{subfigure}[h]{0.2\textwidth}\centering\includegraphics[height=120pt]{figures3/knormF.jpg}\caption{}\label{sub:knormh}\end{subfigure}%
\begin{subfigure}[h]{0.2\textwidth}\centering\includegraphics[height=120pt]{figures3/knormH.jpg}\caption{}\label{sub:knormi}\end{subfigure}%
\begin{subfigure}[h]{0.2\textwidth}\centering\includegraphics[height=120pt]{figures3/knormJ.jpg}\caption{}\label{sub:knormj}\end{subfigure}
\captext[\caplbl{knorm}LNBNN feature correspondence scoring]{
% ---
This shows the nearest four neighbors of a distinctive query feature~\cref{sub:knormf}.
The bottom row shows the warped and normalized features with their SIFT descriptors overlaid.
The top row shows the annotation from which each feature was extracted.
The first two neighbors~\cref{sub:knormg,sub:knormh} are correct matches, the third neighbor~\cref{sub:knormi} is
an incorrect match, and the fourth neighbor~\cref{sub:knormj} is used as an LNBNN normalizer to score the first
three matches.
% ---
}
\label{fig:knorm}
\end{figure}
}
\begin{comment}
python -m ibeis.algo.hots.chip_match --test-show_single_namematch --qaid 1 \
--noshow_truth --show_timedelta=False --show_aid=False \
--dpath ~/latex/crall-thesis-2017 --save figures3/namematch.jpg --diskshow --dpi=300 --figsize=5,5
#
python -m ibeis.algo.hots.chip_match --test-show_single_namematch --qaid 2 --dpath ~/latex/crall-candidacy-2015 --save figures3/namematch.jpg --diskshow --dpi=180 --clipwhite
python -m ibeis.algo.hots.chip_match --test-show_single_namematch --qaid 3 --dpath ~/latex/crall-candidacy-2015 --save figures3/namematch.jpg --diskshow --dpi=180 --clipwhite
python -m ibeis.algo.hots.chip_match --test-show_single_namematch --qaid 4 --dpath ~/latex/crall-candidacy-2015 --save figures3/namematch.jpg --diskshow --dpi=180 --clipwhite
--verbose
\end{comment}
\newcommand{\namematch}{
\begin{figure}[ht!]
\centering\includegraphics[width=\textwidth]{figures3/namematch.jpg}
\captext[\caplbl{namematch}\Nsumprefix{} \namescoring{}]{
% ---
The query annotation is at the top left.
Each query feature matches at most one feature in the exemplars for a name.
Each line denotes a feature correspondence colored by its matching score.
In the top right of each database annotation is its annotation score.
Feature scores from multiple views are combined into a name score shown on top.
% ---
}
\label{fig:namematch}
\end{figure}
}
\begin{comment}
ibeis sver_single_chipmatch -t default:refine_method=cv2-lmeds-homog,full_homog_checks=True -a default --qaid 18 --dpath ~/latex/crall-candidacy-2015 --save figures3/sverkpts.jpg --label sver --dpi=300 --clipwhite --diskshow --saveparts --figsize=10,10 --norefinelbl
\end{comment}
\newcommand{\sver}{
\begin{figure}[h]
\centering
\begin{subfigure}[h]{0.25\textwidth}\centering\includegraphics[height=130pt]{figures3/sverkptsA.jpg}\caption{}\label{sub:svera}\end{subfigure}
\begin{subfigure}[h]{0.25\textwidth}\centering\includegraphics[height=130pt]{figures3/sverkptsB.jpg}\caption{}\label{sub:sverb}\end{subfigure}
\begin{subfigure}[h]{0.25\textwidth}\centering\includegraphics[height=130pt]{figures3/sverkptsC.jpg}\caption{}\label{sub:sverc}\end{subfigure}
\begin{subfigure}[h]{0.35\textwidth}\centering\includegraphics[width=\textwidth]{figures3/sverkptsD.jpg}\caption{}\label{sub:sverd}\end{subfigure}
\begin{subfigure}[h]{0.35\textwidth}\centering\includegraphics[width=\textwidth]{figures3/sverkptsE.jpg}\caption{}\label{sub:svere}\end{subfigure}
\begin{subfigure}[h]{0.35\textwidth}\centering\includegraphics[width=\textwidth]{figures3/sverkptsF.jpg}\caption{}\label{sub:sverf}\end{subfigure}
\begin{subfigure}[h]{0.35\textwidth}\centering\includegraphics[width=\textwidth]{figures3/sverkptsG.jpg}\caption{}\label{sub:sverg}\end{subfigure}
\captext[Spatial verification]{
% ---
This shows an example of spatial verification process.
The three images on the top show~\cref{sub:svera} the original matches, \Cref{sub:sverb} the best set of
inliers from affine hypothesis generation, and \Cref{sub:sverc} the final set of homography inliers.
The images on the bottom show~\cref{sub:sverd,sub:sverf} the matching images warped and superimposed by both
the best affine \Cref{sub:svere} and estimated homography transformation~\cref{sub:sverg}.
% ---
}
\label{fig:sver}
\end{figure}
}
\begin{comment}
ALL DATABASE INFO
python -m ibeis Chap3.measure dbstats --dbs=PZ_Master1,GZ_Master1,GIRM_Master1,humpbacks_fb
python -m ibeis Chap3.agg_dbstats
\end{comment}
\newcommand{\DatabaseInfo}{
\begin{table}[ht!]
\centering
\captext[Database statistics]{
These statistics indicate the number of individuals and annotations in each dataset.
An encounter is a group of annotations from the same individual taken at the same place and time.
Resighted names contain multiple encounters.}
\label{tbl:DatabaseStatistics}
\input{figures3/agg-enc.tex}
\end{table}
%--
\begin{table}[h!]
\centering
\captext[Annotations per quality]{
The ``None'' column indicates the number of annotations without a quality label.}
\label{tbl:AnnotationsPerQuality}
\input{figures3/agg-qual.tex}
\end{table}
%--
\begin{table}[h!]
\centering
\captext[Annotations per viewpoint]{
% ---
Columns names are abbreviated using the first letters of front, left, back, and right.
The ``None'' column indicates the number of annotations without a viewpoint label.
% ---
}
\label{tbl:AnnotationsPerViewpoint}
\input{figures3/agg-view.tex}
\end{table}
}
%-------------
% TimeDeltas
\begin{comment}
python -m ibeis Chap3.measure time_distri --dbs=GIRM_Master1,GZ_Master1,PZ_Master1,humpbacks_fb --diskshow
python -m ibeis Chap3.draw time_distri --dbs=GIRM_Master1,GZ_Master1,PZ_Master1,humpbacks_fb --diskshow
\end{comment}
\newcommand{\timedist}{
\begin{figure}[ht!] \centering
\begin{subfigure}[h]{\textwidth}\centering\includegraphics[width=.9\textwidth]{figures3/PZ_Master1/timedist.png}\caption{Plains zebras}\end{subfigure}
\begin{subfigure}[h]{\textwidth}\centering\includegraphics[width=.9\textwidth]{figures3/GZ_Master1/timedist.png}\caption{Grévy's zebras}\end{subfigure}
\begin{subfigure}[h]{\textwidth}\centering\includegraphics[width=.9\textwidth]{figures3/GIRM_Master1/timedist.png}\caption{Masai giraffes}\end{subfigure}
\begin{subfigure}[h]{\textwidth}\centering\includegraphics[width=.9\textwidth]{figures3/humpbacks_fb/timedist.png}\caption{Humpbacks}\end{subfigure}
\captext[\caplbl{timedist}Distribution of image timestamps]{
% ---
The y-axis is plotted on a square-root scale to emphasize times when only a few images were taken.
For plains zebras and Grévy's zebras images were collected over many years.
For Masai giraffes all data was collected immediately before and during the \GZC{}.
% ---
}
\label{fig:timedist}
\end{figure}
}
% -------------------------------
% --- Baseline Experiments ---
% -------------------------------
\begin{comment}
\end{comment}
\begin{comment}
python -m ibeis Chap3.draw_agg_baseline --diskshow
python -m ibeis Chap3.draw_all --dbs=GZ_Master1,PZ_Master1,GIRM_Master1
python -m ibeis Chap3.draw_all --db GZ_Master1
python -m ibeis Chap3.draw_all --db PZ_Master1
python -m ibeis Chap3.draw_all --db GIRM_Master1
\end{comment}
\newcommand{\BaselineExpt}{
\begin{figure}[ht!]\centering
\begin{subfigure}[h]{\textwidth}\centering\includegraphics[width=\textwidth]{figures3/agg-baseline.png}\end{subfigure}
\captext[\caplbl{BaselineExpt}Baseline experiment]{
% ---
The baseline experiment is a high-level indicator of the ranking accuracy of each species.
We measure ranking accuracy using a single query and database annotation --- selected from different
encounters --- per individual.
The number of query annotations (\pvar{qsize}) and database annotations (\pvar{dsize}) are given for each
species in the legend.
% ---
}
\label{fig:BaselineExpt}
\end{figure}
}
\begin{comment}
python -m ibeis Chap3.draw_all --dbs=GZ_Master1,PZ_Master1
\end{comment}
\begin{comment}
ibeis Chap3.measure smk --db=GZ_Master1
ibeis Chap3.draw smk --db=GZ_Master1 --diskshow
ibeis Chap3.measure smk --db=PZ_Master1
ibeis Chap3.draw smk --db=PZ_Master1 --diskshow
ibeis Chap3.measure smk --dbs=GZ_Master1,PZ_Master1
ibeis Chap3.draw smk --dbs=GZ_Master1,PZ_Master1 --diskshow
\end{comment}
\newcommand{\SMKExpt}{
\begin{figure}[ht!]\centering
\begin{subfigure}[h]{\textwidth}\centering\includegraphics[width=\textwidth]{figures3/PZ_Master1/smk.png}\caption{Plains zebras}\label{sub:SMKExptA}\end{subfigure}
\begin{subfigure}[h]{\textwidth}\centering\includegraphics[width=\textwidth]{figures3/GZ_Master1/smk.png}\caption{Grévy's zebras}\label{sub:SMKExptB}\end{subfigure}
\captext[\caplbl{SMKExpt}SMK experiment]{
% ---
In this experiment we compare the (VLAD based) SMK algorithm to our LNBNN ranking algorithm.
The results demonstrate that LNBNN outperforms the ranking accuracy of SMK.
The number of query/database annotations (\pvar{qsize} / \pvar{dsize}) are shown in the lower left.
% ---
}
\label{fig:SMKExpt}
\end{figure}
}
\begin{comment}
python -m ibeis Chap3.measure foregroundness --dbs=GZ_Master1,PZ_Master1
python -m ibeis Chap3.draw foregroundness --dbs=GZ_Master1,PZ_Master1 --diskshow
python -m ibeis -e draw_rank_cmc --db GZ_Master1 -a timectrl -t baseline:fg_on=[True,False] --show
\end{comment}
\newcommand{\FGIntraExpt}{
\begin{figure}[ht!]\centering
\begin{subfigure}[h]{\textwidth}\centering\includegraphics[width=\textwidth]{figures3/PZ_Master1/foregroundness_intra.png}\caption{Plains zebras}\end{subfigure}
\begin{subfigure}[h]{\textwidth}\centering\includegraphics[width=\textwidth]{figures3/GZ_Master1/foregroundness_intra.png}\caption{Grévy's zebras}\end{subfigure}
\captext[\caplbl{FGIntraExpt}Foregroundness experiment]{
% ---
Applying foregroundness weights to feature correspondences improves the identification accuracy at
the top rank by filtering matches in scenery.
This experiment was performed by matching annotations within several occurrences.
Thus, in this experiment \pvar{qsize} is a sum and \pvar{dsize} is an average.
% ---
}
\label{fig:FGIntraExpt}
\end{figure}
}
% -------------------------------
% --- Invariance Experiments ----
% -------------------------------
\newcommand{\InvarExpt}{
\begin{figure}[ht!]\centering
\begin{subfigure}[h]{\textwidth}\centering\includegraphics[width=\textwidth]{figures3/PZ_Master1/invar.png}\caption{Plains zebras}\label{sub:InvarExptA}\end{subfigure}
\begin{subfigure}[h]{\textwidth}\centering\includegraphics[width=\textwidth]{figures3/GZ_Master1/invar.png}\caption{Grévy's zebras}\label{sub:InvarExptB}\end{subfigure}
\captext[\caplbl{InvarExpt}Feature invariance experiment]{
% ---
This experiment tests the effect of affine invariance (AI) and the query-side rotation heuristic
(QRH) on identification accuracy.
For plains zebras circular keypoints with the QRH are the most accurate.
For Grévy's zebras enabling affine invariance works the best.
The number of query/database annotations (\pvar{qsize} / \pvar{dsize}) are shown in the lower left.
% ---
}
\label{fig:InvarExpt}
\end{figure}
}
% TODO; http://tex.stackexchange.com/questions/75014/is-it-possible-to-make-a-reference-to-a-subfigure-to-appear-figure-2a-with-cle
\begin{comment}
python -m ibeis.viz.viz_chip --test-show_chip --aid 44 \
--weight_label=None --ecc --dpi=300 --draw_lbls=False \
--ellalpha=.8 --ell_linewidth=1.4 --notitle \
--dpath ~/latex/crall-thesis-2017/figures3 --save=pzaffkpts.jpg --diskshow --darken
python -m ibeis.viz.viz_chip --test-show_chip --aid 44 \
--weight_label=None --ecc --dpi=300 --draw_lbls=False \
--ellalpha=.8 --ell_linewidth=1.4 --notitle \
--affine-invariance=False --augment_orientation=True --ori \
--dpath ~/latex/crall-thesis-2017/figures3 --save=pzcirckpts.jpg --diskshow --darken
python -m ibeis.viz.viz_chip --test-show_chip --db GZ_Master1 --aid 1000 \
--weight_label=None --ecc --dpi=300 --draw_lbls=False \
--ellalpha=.8 --ell_linewidth=1.4 --notitle \
--dpath ~/latex/crall-thesis-2017/figures3 --save=gzaffkpts.jpg --diskshow --darken
python -m ibeis.viz.viz_chip --test-show_chip --db GZ_Master1 --aid 1000 \
--weight_label=None --ecc --dpi=300 --draw_lbls=False \
--ellalpha=.8 --ell_linewidth=1.4 --notitle \
--affine-invariance=False --augment_orientation=True --ori \
--dpath ~/latex/crall-thesis-2017/figures3 --save=gzcirckpts.jpg --diskshow --darken
\end{comment}
\newcommand{\kptstype}{
\begin{figure}[ht!]\centering
\begin{subfigure}[h]{.48\textwidth}\centering\includegraphics[width=\textwidth]{figures3/pzaffkpts.jpg}\caption{}\label{sub:kptstypeA}\end{subfigure}
\begin{subfigure}[h]{.48\textwidth}\centering\includegraphics[width=\textwidth]{figures3/pzcirckpts.jpg}\caption{}\label{sub:kptstypeB}\end{subfigure}
\begin{subfigure}[h]{.48\textwidth}\centering\includegraphics[width=\textwidth]{figures3/gzaffkpts.jpg}\caption{}\label{sub:kptstypeC}\end{subfigure}
\begin{subfigure}[h]{.48\textwidth}\centering\includegraphics[width=\textwidth]{figures3/gzcirckpts.jpg}\caption{}\label{sub:kptstypeD}\end{subfigure}
\captext[\caplbl{kptstype}Examples of keypoint invariance]{
% ---
Many affine keypoints detected on plains zebras tend to encompass only one or two stripes. The distinctive stripe
patterns on Grévy's zebras are well captured by affine keypoints, whereas circular keypoints are more spread out.
For visibility this figure shows a random sample of all keypoints on a darkened image. Elliptical keypoints
in~\cref{sub:kptstypeA,sub:kptstypeC} are colored by eccentricity and circular keypoints
in~\cref{sub:kptstypeB,sub:kptstypeD} are colored by scale.
% ---
}
\label{fig:kptstype}
\end{figure}
}
% -------------------------------
% --- Namescore Experiments ----
% -------------------------------
\begin{comment}
python -m ibeis Chap3.measure nsum --dbs=GZ_Master1
python -m ibeis Chap3.measure nsum --dbs=GZ_Master1,PZ_Master1
python -m ibeis Chap3.draw nsum --dbs=GZ_Master1,PZ_Master1 --diskshow
\end{comment}
\newcommand{\NScoreExpt}{
\begin{figure}[ht!]\centering
\begin{subfigure}[h]{\textwidth}\centering\includegraphics[width=\textwidth]{figures3/PZ_Master1/nsum.png}\caption{Plains zebras}\label{sub:NScoreExptA}\end{subfigure}
\begin{subfigure}[h]{\textwidth}\centering\includegraphics[width=\textwidth]{figures3/GZ_Master1/nsum.png}\caption{Grévy's zebras}\label{sub:NScoreExptB}\end{subfigure}
\captext[\caplbl{NScoreExpt}Name scoring experiment]{
% ---
There is a clear separation between identification accuracy when the number of exemplars per name is
$1$ compared to when it is $3$.
Feature based name scoring (\nsum{}) is slightly more accurate than scoring using the annotation
based name scoring (\csum{}).
The number of query /database annotations (\pvar{qsize} / \pvar{dsize}) are shown in the lower left.
Database size was normalized using confusors.
}
\label{fig:NScoreExpt}
\end{figure}
}
% -------------------------------
% --- K Experiments
% -------------------------------
\begin{comment}
python -m ibeis Chap3.measure kexpt --dbs=GZ_Master1,PZ_Master1
python -m ibeis Chap3.draw kexpt --dbs=GZ_Master1,PZ_Master1 --diskshow
\end{comment}
\newcommand{\KExptA}{
\begin{figure}[ht!]\centering
\centering\includegraphics[width=\textwidth]{figures3/PZ_Master1/kexpt.png}
\captext[\caplbl{KExptA}The $K$ experiment for plains zebras]{
% ---
This shows the identification accuracy for plains zebras using different values of $\K$ (the number of nearest
neighbors assigned to each query feature), different numbers of exemplars (\pvar{dpername}), and
different database sizes (\pvar{dsize}).
}
\label{fig:KExptA}
\end{figure}
}
\newcommand{\KExptB}{
\begin{figure}[ht!]\centering
\centering\includegraphics[width=\textwidth]{figures3/GZ_Master1/kexpt.png}
\captext[\caplbl{KExptB}The $K$ experiment for Grévy's zebras]{
% ---
This shows the identification accuracy for Grévy's zebras using different values of $\K$ (the number of nearest
neighbors assigned to each query feature), different numbers of exemplars (\pvar{dpername}), and
different database sizes (\pvar{dsize}).
}
\label{fig:KExptB}
\end{figure}
}
% -------------------------------
% --- Failure Cases
% -------------------------------
% --- VIEWPOINT
\begin{comment}
python -m ibeis draw_match_cases --db PZ_Master1 -a timectrl -t best --filt :fail=True,sortdsc=gtscore --show --qaid=1223 \
--annotmodes=[3] --noshow_truth --dpi=300 --dpath ~/latex/crall-thesis-2017 --save figuresC/failview.jpg --diskshow --saveparts
\end{comment}
\newcommand{\FailViewpoint}{
\begin{figure}[ht!]
\centering
\begin{subfigure}[h]{0.47\textwidth}\centering\includegraphics[height=250pt]{figuresC/failviewA.jpg}\caption{}\label{sub:failviewA}\end{subfigure}
\begin{subfigure}[h]{0.47\textwidth}\centering\includegraphics[height=250pt]{figuresC/failviewB.jpg}\caption{}\label{sub:failviewB}\end{subfigure}
\captext[Unaligned failure case]{
% ---
Due to pose and viewpoint variations, the correctly matching pair of annotations \cref{sub:failviewB} is returned
at rank $22$ while the incorrect pair of annotations \cref{sub:failviewA} is returned at rank $1$.
In the correct pair, the features on the front leg are not aligned and failed to match.
%In the incorrect pair, the heads of the animals are in a similar pose and thus creating several correspondences
% that are distinctive by coincidence.
% ---
}
\label{fig:FailViewpoint}
\end{figure}
}
% --- OCCLUSION
\begin{comment}
python -m ibeis draw_match_cases -a timectrl -t best --filt :fail=True,sortdsc=gfscore --db PZ_Master1 --show --qaid=17190 \
--annotmodes=[3] --noshow_truth --dpi=300 --dpath ~/latex/crall-thesis-2017 --save figuresC/failocclu.jpg --diskshow --saveparts
\end{comment}
\newcommand{\FailOcclusion}{
\begin{figure}[ht!]
\centering
\begin{subfigure}[h]{0.47\textwidth}\centering\includegraphics[height=260pt]{figuresC/failoccluA.jpg}\caption{}\label{sub:failoccluA}\end{subfigure}
\begin{subfigure}[h]{0.47\textwidth}\centering\includegraphics[height=260pt]{figuresC/failoccluB.jpg}\caption{}\label{sub:failoccluB}\end{subfigure}
\captext[Occlusion failure case]{
% ---
The plants in the query annotation inhibit the creation of feature correspondences,
causing the correct pair of annotations \cref{sub:failoccluB} to be returned at rank $2$.
%This is exacerbated by pose and viewpoint variations.
The incorrect pair of annotations \cref{sub:failoccluA} at rank $1$ are not the same individual even though they share similar features.
% ---
}
\label{fig:FailOcclusion}
\end{figure}
}
% --- QUALITY
\begin{comment}
python -m ibeis draw_match_cases -a timectrl -t best --filt :fail=True,sortdsc=gfscore --db GIRM_Master1 --qaid=336 --show \
--annotmodes=[3] --noshow_truth --dpi=300 --dpath ~/latex/crall-thesis-2017 --save figuresC/failquality.jpg --diskshow --saveparts
python -m ibeis draw_match_cases -a timectrl -t best --filt :fail=True,with_tag=Quality,sortdsc=gfscore --db GIRM_Master1 --qaid 639 \
--hargv=match --render --cmdaug="FailQuality" --vert=False
\end{comment}
\newcommand{\FailQuality}{
\begin{figure}[ht!]
\centering
\begin{subfigure}[h]{0.47\textwidth}\centering\includegraphics[height=270pt]{figuresC/failqualityA.jpg}\caption{}\label{sub:failqualityA}\end{subfigure}
\begin{subfigure}[h]{0.47\textwidth}\centering\includegraphics[height=270pt]{figuresC/failqualityB.jpg}\caption{}\label{sub:failqualityB}\end{subfigure}
\captext[\caplbl{FailQuality}Quality failure case]{
% ---
The low resolution of the database annotation causes the correct pair of annotations \cref{sub:failqualityB} to
be returned at rank $43$.
The incorrect pair of annotation \cref{sub:failqualityA} did not receive a particularly high score, but it was
returned at rank $1$ because no feature correspondences were established to the correct match.
% ----
}
\label{fig:FailQuality}
\end{figure}
}
% --- Scenery Match
\begin{comment}
python -m ibeis draw_match_cases -a timectrl -t best:fg_on=False --filt :fail=True,sortdsc=gfscore --db GZ_Master1 --show --qaid=2317 \
--annotmodes=[3] --noshow_truth --dpi=300 --dpath ~/latex/crall-thesis-2017 --save figuresC/failscenery.jpg --diskshow --saveparts
\end{comment}
\newcommand{\FailScenery}{
\begin{figure}[ht!]
\centering
\begin{subfigure}[h]{0.47\textwidth}\centering\includegraphics[height=270pt]{figuresC/failsceneryA.jpg}\caption{}\label{sub:failsceneryA}\end{subfigure}
\begin{subfigure}[h]{0.47\textwidth}\centering\includegraphics[height=270pt]{figuresC/failsceneryB.jpg}\caption{}\label{sub:failsceneryB}\end{subfigure}
\captext[\caplbl{FailScenery}Scenery failure case]{
% ---
The incorrect pair of annotations \cref{sub:failsceneryA} was returned at rank $1$ because of strong matches in
the background scenery.
The correct pair \cref{sub:failsceneryB} was returned at rank $2$ and did not produce matches in the front leg
due to pose variations.
The annotations in the scenery match pair were taken seconds apart in the same location causing their
backgrounds to be near duplicates.
The foregroundness measure was disabled to produce this example, enabling it addresses nearly all scenery match
cases.
% ---
}
\label{fig:FailScenery}
\end{figure}
}
% --- Photobomb
\begin{comment}
python -m ibeis draw_match_cases --db PZ_Master1 -a timectrl -t best --filt :fail=True,with_tag=Photobomb,sortdsc=gfscore --qaid=6944 \
--annotmodes=[3] --noshow_truth --dpi=300 --dpath ~/latex/crall-thesis-2017 --save figuresC/failpb.jpg --diskshow --saveparts
\end{comment}
\newcommand{\FailPhotobomb}{
\begin{figure}[ht!]
\centering
\begin{subfigure}[h]{0.47\textwidth}\centering\includegraphics[height=300pt]{figuresC/failpbA.jpg}\caption{}\label{sub:failpbA}\end{subfigure}
\begin{subfigure}[h]{0.47\textwidth}\centering\includegraphics[height=300pt]{figuresC/failpbB.jpg}\caption{}\label{sub:failpbB}\end{subfigure}
\captext[\caplbl{FailPhotobomb}Photobomb failure case]{
% ---
A photobombing animal in the foreground of the database annotation causes LNBNN to return the incorrect result \cref{sub:failpbA} at rank $1$.
The correct match \cref{sub:failpbB}, has a significant number of matches, but there is a difference of $1$ day
between the pair.
On the other hand, the annotations in the photobomb pair were taken within seconds of each other and therefore
have much higher visual similarity.
% ---
}
\label{fig:FailPhotobomb}
\end{figure}
}