-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
134 lines (100 loc) · 3.53 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import nltk
from nltk.stem.lancaster import LancasterStemmer
stemmer = LancasterStemmer()
import numpy
import tflearn
import tensorflow
import random
import json
import pickle
# Preprocessing of data
# we use try and except so we don't have to run the preprocessing and training data part whenever we run the code
with open("intents.json") as file:
data = json.load(file)
try:
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
except:
words = []
labels = []
docs_x = []
docs_y = []
for intent in data["intents"]:
for pattern in intent["patterns"]:
wrds = nltk.word_tokenize(pattern)
words.extend(wrds)
docs_x.append(wrds)
docs_y.append(intent["tag"])
if intent["tag"] not in labels:
labels.append(intent["tag"])
words = [stemmer.stem(w.lower()) for w in words if w != "?"]
words = sorted(list(set(words))) # set removes duplicates from words
labels = sorted(labels)
# start training of data
training = []
output = []
# convert list into a bag of words - 1 Hot encoding
out_empty = [0 for _ in range(len(labels))]
for x, doc in enumerate(docs_x):
bag = [] # bag of words
wrds = [stemmer.stem(w.lower()) for w in doc]
for w in words:
if w in wrds: # word exists in the current pattern
bag.append(1)
else: # word isn't here
bag.append(0)
output_row = out_empty[:]
output_row[labels.index(docs_y[x])] = 1
training.append(bag)
output.append(output_row)
training = numpy.array(training)
output = numpy.array(output)
with open("data.pickle", "wb") as f:
pickle.dump((words, labels, training, output), f)
# Tensorflow part
from tensorflow.python.framework import ops
ops.reset_default_graph()
# tensorflow.reset_default_graph(
# ) # reset tensorflow to remove all previous data
net = tflearn.input_data(shape=[None, len(
training[0])]) # Define input shape that we are expecting from our model
net = tflearn.fully_connected(
net, 8
) # add a fully connected layer to our neural network with 8 neurons which starts at the previous input data (Hidden Layer)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(
net, len(output[0]), activation="softmax"
) # get probability of each neuron in the layer using softnmax
net = tflearn.regression(net)
model = tflearn.DNN(net) # Type of Neural network
try:
model.load("model.tflearn")
except:
model.fit(
training, output, n_epoch=1000, batch_size=8, show_metric=True
) # number of epoch is the amount of times it is going to see the same data
model.save("model.tflearn")
# Predictions
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = nltk.word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return numpy.array(bag)
def chat():
print("\nStart talking with the bot (type quit to stop)!")
while True:
inp = input("You: ")
if inp.lower() == "quit":
break
results = model.predict([bag_of_words(inp, words)])
results_index = numpy.argmax(results)
tag = labels[results_index]
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
print(random.choice(responses))
chat()