forked from luoyetx/Joint-Face-Detection-and-Alignment
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
79 lines (70 loc) · 2.63 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#!/usr/bin/env python2.7
# pylint: disable=bad-indentation, no-member, invalid-name, line-too-long
import os
import argparse
import cv2
from jfda.utils import Timer
from jfda.detector import JfdaDetector
def main(args):
net = ['proto/p.prototxt', 'model/p.caffemodel',
'proto/r.prototxt', 'model/r.caffemodel',
'proto/o.prototxt', 'model/o.caffemodel',
'proto/l.prototxt', 'model/l.caffemodel',]
if args.minicaffe:
from jfda.mdetector import MiniCaffeDetector
detector = MiniCaffeDetector(net)
else:
detector = JfdaDetector(net)
if args.pnet_single:
detector.set_pnet_single_forward(True)
param = {
'ths': [0.6, 0.7, 0.8],
'factor': 0.709,
'min_size': 24,
}
timer = Timer()
def gen(img, bboxes, outname):
for i in range(len(bboxes)):
x1, y1, x2, y2, score = bboxes[i, :5]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 0, 255), 2)
cv2.putText(img, '%.03f'%score, (x1, y1), cv2.FONT_HERSHEY_PLAIN, 1, (0, 255, 0))
# landmark
landmark = bboxes[i, 9:].reshape((5, 2))
for j in range(5):
x, y = landmark[j]
x, y = int(x), int(y)
cv2.circle(img, (x, y), 2, (0, 255, 0), -1)
cv2.imwrite(outname, img)
with open('demo.txt', 'r') as fin:
for line in fin.readlines():
fp = line.strip()
dn = os.path.dirname(fp)
fn = os.path.basename(fp).split('.')[0]
img = cv2.imread(fp, cv2.IMREAD_COLOR)
timer.tic()
bb, ts = detector.detect(img, debug=True, **param)
timer.toc()
print 'detect %s costs %.04lfs'%(fp, timer.elapsed())
print 'image size = (%d x %d), s1: %.04lfs, s2: %.04lfs, s3: %.04lfs, s4: %.04lf'%(
img.shape[0], img.shape[1], ts[0], ts[1], ts[2], ts[3])
print 'bboxes, s1: %d, s2: %d, s3: %d, s4: %d'%(len(bb[0]), len(bb[1]), len(bb[2]), len(bb[3]))
out1 = '%s/%s_stage1.jpg'%(dn, fn)
out2 = '%s/%s_stage2.jpg'%(dn, fn)
out3 = '%s/%s_stage3.jpg'%(dn, fn)
out4 = '%s/%s_stage4.jpg'%(dn, fn)
gen(img.copy(), bb[0], out1)
gen(img.copy(), bb[1], out2)
gen(img.copy(), bb[2], out3)
gen(img.copy(), bb[3], out4)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=-1, help='gpu id to use, -1 for cpu')
parser.add_argument('--pnet-single', action='store_true', help='pnet use single forward')
parser.add_argument('--minicaffe', action='store_true', help='use minicaffe')
args = parser.parse_args()
if args.gpu >= 0:
import caffe
caffe.set_mode_gpu()
caffe.set_device(args.gpu)
main(args)