forked from glennhickey/teHmm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhmm.py
729 lines (646 loc) · 31.9 KB
/
hmm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
#!/usr/bin/env python
#Released under the MIT license, see LICENSE.txt
#Copyright (C) 2013 by Glenn Hickey
"""
Class derived from _BaseHMM and MultinomialHMM from sklearn/tests/hmm.py
See below:
Copyright (c) 2007-2014 the scikit-learn developers.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
a. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
b. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
c. Neither the name of the Scikit-learn Developers nor the names of
its contributors may be used to endorse or promote products
derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.
"""
import os
import sys
import numpy as np
import pickle
import string
import copy
import logging
import time
import random
from collections import Iterable
from numpy.testing import assert_array_equal, assert_array_almost_equal
from .emission import IndependentMultinomialAndGaussianEmissionModel
from .track import TrackList, TrackTable, Track
from .common import EPSILON, myLog, logger
from .basehmm import BaseHMM, check_random_state, NEGINF, ZEROLOGPROB, logsumexp
from .basehmm import normalize
from . import _hmm
"""
This class is based on the MultinomialHMM from sckikit-learn, but we make
the emission model a parameter. The custom emission model we support at this
point is a multi-*dimensional* multinomial.
"""
class MultitrackHmm(BaseHMM):
def __init__(self, emissionModel=None,
startprob=None,
transmat=None, startprob_prior=None, transmat_prior=None,
algorithm="viterbi", random_state=None,
n_iter=10, thresh=1e-2, params=string.ascii_letters,
init_params=string.ascii_letters,
state_name_map=None,
fudge=0.0,
fixTrans=False,
fixEmission=False,
fixStart=True,
forceUserTrans=None,
forceUserEmissions=None,
forceUserStart=None,
transMatEpsilons=False,
maxProb=False,
maxProbCut=None):
if emissionModel is not None:
n_components = emissionModel.getNumStates()
else:
n_components = 1
"""Create a hidden Markov model that supports multiple tracks.
emissionModel must have already been created"""
BaseHMM.__init__(self, n_components=n_components,
startprob=startprob,
transmat=transmat,
startprob_prior=startprob_prior,
transmat_prior=transmat_prior,
algorithm=algorithm,
random_state=random_state,
n_iter=n_iter,
thresh=thresh,
params=params,
init_params=init_params)
# remember init_params
self.init_params = init_params
#: emission model is specified as parameter here
self.emissionModel = emissionModel
#: a TrackList object specifying information about the tracks
self.trackList = None
#: a map between state values and names (track.CategoryMap)
self.stateNameMap = state_name_map
# little constant that gets added to frequencies during training
# to prevent zero probabilities. The bigger it is, the flatter
# the distribution... (note that emission class has its own)
self.fudge = fudge
# freeze input transmat
self.fixTrans = fixTrans
# freeze input EmissionModel
self.fixEmission = fixEmission
# freeze input Start Probs
self.fixStart = fixStart
# keep track of number of EM iterations performed
self.current_iteration = None
# keep tack of last probability from forward algo
self.last_forward_log_prob = None
self.last_forward_log_prob_it = -1
# userTransition file (as line list) to apply after each iteration
self.forceUserTrans = forceUserTrans
if forceUserTrans is not None:
with open(forceUserTrans) as f:
self.forceUserTrans = f.readlines()
# userEmissions file (as line list) to apply after each iteration
self.forceUserEmissions = forceUserEmissions
if forceUserEmissions is not None:
with open(forceUserEmissions) as f:
self.forceUserEmissions = f.readlines()
# userStart file (as line list) to apply after each iteration
self.forceUserStart = forceUserStart
if forceUserStart is not None:
with open(forceUserStart) as f:
self.forceUserStart = f.readlines()
# toggle whether we add epsilons to all transition probabilites.
# Off by default (good for semisupervised where we want to keep
# transition edges that were not initialized as 0).
# On the other hand, for a fully connected unsupervised run,
# it's probably best to turn on to not get caught in weird local
# maxima
self.transMatEpsilons = transMatEpsilons
# options to cherry-pick best iteration for training rather than
# returning the last one
self.maxProb = maxProb
self.best_forward_log_prob = None
self.bestCopy = None
self.maxProbCut = maxProbCut
# keep track of free parameterse wrt user settings for bic computation
self.numZeroInitEdges = 0
self.numZeroInitStarts = 0
def train(self, trackData):
""" Use EM to estimate best parameters from scratch (unsupervised)"""
self.bestCopy = None
self.trackList = trackData.getTrackList()
self.fit(trackData.getTrackTableList())
if self.maxProb is True:
assert self.bestCopy is not None
logger.info("HMM parameters learned from maxProb iteration %d"
" with logprob=%f" % (
self.bestCopy.last_forward_log_prob_it-1,
self.bestCopy.last_forward_log_prob))
self.emissionModel = self.bestCopy.emissionModel
self.transmat_ = self.bestCopy.transmat_
self._log_transmat = self.bestCopy._log_transmat
self.startprob_ = self.bestCopy.startprob_
self.last_forward_log_prob = self.bestCopy.last_forward_log_prob
self.last_forward_log_prob_it = self.bestCopy.last_forward_log_prob_it
self.validate()
def supervisedTrain(self, trackData, bedIntervals):
""" Train directly from set of known states (4th column in the
bedIntervals provided. We assume that the most likely parameters
are also just the expected values, which works for our basic
multinomial distribution. Note that the states should already
have been mapped to integers"""
# NOTE bedIntervals must be sorted!
self.trackList = trackData.getTrackList()
N = self.emissionModel.getNumStates()
transitionCount = self.fudge + np.zeros((N,N), np.float)
freqCount = self.fudge + np.zeros((N,), np.float)
prevInterval = None
logger.debug("beginning supervised transition stats")
for interval in bedIntervals:
state = int(interval[3])
assert state < N
transitionCount[state,state] += interval[2] - interval[1] - 1
freqCount[state] += interval[2] - interval[1]
if prevInterval is not None and prevInterval[0] == interval[0]:
if interval[1] < prevInterval[2]:
raise RuntimeError(
"Overlapping or out of order training intervals"
" detected: %s and %s."
(prevInterval, interval))
elif interval[1] == prevInterval[2]:
transitionCount[prevInterval[3], state] += 1
prevInterval = interval
for row in xrange(len(transitionCount)):
transitionCount[row] /= np.sum(transitionCount[row])
self.transmat_ = np.copy(transitionCount)
# scikit learn is too chicken to have 0-probs. so we go back and
# hack them in if necessary
self._log_transmat = myLog(transitionCount)
freqCount /= np.sum(freqCount)
self.startprob_ = freqCount
self.emissionModel.supervisedTrain(trackData, bedIntervals)
self.validate()
def logProb(self, trackData):
""" Return the log probability of the data (one score for each
interval"""
logProbList = []
for trackTable in trackData.getTrackTableList():
totalLogProb.append(self.score(trackTable))
return logProbList
def viterbi(self, trackData, numThreads = 1):
""" Return the output of the Viterbi algorithm on the loaded
data: a tuple of (log likelihood of best path, and the path itself)
(one data point of each interval of track data)
"""
# Thread interface provided but not implemented:
assert numThreads == 1
output = []
for trackTable in trackData.getTrackTableList():
logger.debug("Beginning hmm viterbi decode")
prob, states = self.decode(trackTable)
logger.debug("Done hmm viterbi decode")
if self.stateNameMap is not None:
states = map(self.stateNameMap.getMapBack, states)
output.append((prob,states))
return output
def posteriorDecode(self, trackData, numThreads = 1):
""" Return the output of the maximum posterior probabilitiy decoding
data: a tuple of (log likelihood of best path, and the path itself)
(one data point of each interval of track data)
"""
output = []
for trackTable in trackData.getTrackTableList():
logger.debug("Beginning hmm max posterior decode")
prob, states = self.decode(trackTable, algorithm="map")
logger.debug("Done hmm max posterior decode")
if self.stateNameMap is not None:
states = map(self.stateNameMap.getMapBack, states)
output.append((prob,states))
return output
def posteriorDistribution(self, trackData):
""" Return the posterior probability (array of probabilities, 1 for each state)
distribution for the observations"""
output = []
for trackTable in trackData.getTrackTableList():
logger.debug("Beginning hmm posterior distribution computation")
logprob, posteriors = self.score_samples(trackTable)
logger.debug("Done hmm posterior distribution")
output.append(posteriors)
return output
def emissionDistribution(self, trackData):
""" Return the emission probability (array of probabilities, 1 for each state)
distribution for the observations. In general the posterior distribution
(see above) is more meaningful, this method is mostly for debugging.."""
output = []
logger.debug("Beginning hmm emission distribution computation")
for trackTable in trackData.getTrackTableList():
# note : there's a good chance these were already computed
# and thrown away by, say, a preivous call to viterbi, but
# not worth breaking modularity to reuse for this debug function...
output.append(self._compute_log_likelihood(trackTable))
logger.debug("Dome hmm emission distribution computation")
return output
def __str__(self):
states = [x for x in xrange(self.n_components)]
if self.stateNameMap is not None:
states = map(self.stateNameMap.getMapBack, states)
s = "\nNumStates = %d:\n%s\n" % (self.n_components, str(states))
sp = [(states[i], self.startprob_[i])
for i in xrange(self.n_components)]
if self.random_state is not None:
s += "\nseed = %s\n" % str(self.random_state)
s += "\nStart probs =\n%s\n" % str(sp)
s += "\nTransitions =\n%s\n" % str(self.transmat_)
s += "\nlogTransitions = \n%s\n" % str(myLog(self.transmat_))
em = self.emissionModel
s += "\nNumber of symbols per track=\n%s\n" % str(
em.getNumSymbolsPerTrack())
s += "\nEmissions =\n"
emProbs = em.getLogProbs()
for state, stateName in enumerate(states):
s += "State %s:\n" % stateName
for trackNo in xrange(em.getNumTracks()):
track = self.trackList.getTrackByNumber(trackNo)
s += " Track %d %s (%s):\n" % (track.getNumber(),
track.getName(),
track.getDist())
if track.getDist() == "gaussian":
s += " mean: %f stddev: %f:\n" % tuple(
em.getGaussianParams(trackNo, state))
else:
numSymbolsPerTrack = em.getNumSymbolsPerTrack()
for idx, symbol in enumerate(em.getTrackSymbols(trackNo)):
symbolName = track.getValueMap().getMapBack(symbol)
prob = np.exp(emProbs[trackNo][state][symbol])
if prob > 0.0000005:
logval = str(myLog(prob))
if prob == 0.0:
logval = "-inf"
s += " %s) %s: %f (log=%s)\n" % (symbol,
symbolName,
prob, logval)
return s
def getTrackList(self):
return self.trackList
def getStartProbs(self):
return self.startprob_
def getTransitionProbs(self):
return self.transmat_
def getStateNameMap(self):
return self.stateNameMap
def getEmissionModel(self):
return self.emissionModel
def getLastLogProb(self):
return self.last_forward_log_prob
def validate(self):
assert len(self.startprob_) == self.emissionModel.getNumStates()
assert not isinstance(self.startprob_[0], Iterable)
assert len(self.transmat_) == self.emissionModel.getNumStates()
assert len(self.transmat_[0]) == self.emissionModel.getNumStates()
assert_array_almost_equal(np.sum(self.startprob_), 1.)
for i in xrange(self.emissionModel.getNumStates()):
assert_array_almost_equal(np.sum(self.transmat_[i]), 1.)
self.emissionModel.validate()
def applyUserEmissions(self, userEmLines):
""" Modify the emission distribution with user specified values
read directly from text file into line array"""
assert self.stateNameMap is not None
assert self.trackList is not None
assert self.emissionModel is not None
self.emissionModel.applyUserEmissions(userEmLines, self.stateNameMap,
self.trackList)
def applyUserTrans(self, userTransLines):
""" Modify the transtion probability matrix so that it contains the
probabilities specified by the given text file. If a stateNameMap
(catMap)
is provided, it is used (and missing values trigger errors). If the map
is None, then one is created. If the transmap is None, one is created
as well (with default values being flat distribution.
The modified transMat and catMap are returned as a tuple, can can be
applied to the hmm."""
logger.debug("Applying user transitions to HMM")
N = self.n_components
mask = np.zeros((N, N), dtype=np.int8)
transMat = self.transmat_
catMap = self.stateNameMap
# init the transmap if ncessary
if transMat is None:
transMat = 1. / float(N) + np.zeros((N, N), dtype=np.float)
# read the probabilities into the transmap
f = userTransLines
for line in f:
if len(line.lstrip()) > 0 and line.lstrip()[0] is not "#":
toks = line.split()
assert len(toks) == 3
prob = float(toks[2])
fromState = toks[0]
toState = toks[1]
if not catMap.has(fromState) or not catMap.has(toState):
raise RuntimeError("Cannot apply transition %s->%s to model"
" since at least one of the states was "
"not found in the supervised data." % (
fromState, toState))
fid = catMap.getMap(fromState)
tid = catMap.getMap(toState)
# remember that this is a user transition
mask[fid, tid] = 1
# set the trnasition probability in the matrix
transMat[fid, tid] = prob
# normalize all other probabilities (ie that are unmaksed) so that they
# add up.
for fid in xrange(N):
# total probability of learned states
curTotal = 0.0
# total probability of learned states after normalization
tgtTotal = 1.0
for tid in xrange(N):
if mask[fid, tid] == 1:
tgtTotal -= transMat[fid, tid]
else:
curTotal += transMat[fid, tid]
if tgtTotal < -EPSILON:
raise RuntimeError("User defined probability %f from state %s "
"exceeds 1" % (tgtTotal,
catMap.getMapBack(fid)))
for tid in xrange(N):
if mask[fid, tid] == 0:
if tgtTotal == 0.:
transMat[fid, tid] = 0.
else:
transMat[fid, tid] *= (tgtTotal / curTotal)
# count 0 edges for bic
self.numZeroInitEdges = 0
for i in xrange(len(transMat)):
for j in xrange(len(transMat[i])):
if transMat[i,j] <= EPSILON:
self.numZeroInitEdges += 1
# reset back to make sure logs get updated too
self.transmat_ = transMat
def applyUserStarts(self, userStartLines):
""" modify a HMM that was constructed using supervisedTrain() so that
it contains the start probabilities specified in the userStartPath File."""
logger.debug("Applying user starts to HMM")
f = userStartLines
startProbs = self.startprob_
N = self.n_components
if startProbs is None:
startProbs = 1. / float(len(self.stateNameMap)) + np.zeros((N))
mask = np.zeros(startProbs.shape, dtype=np.int8)
# scan file and set values in logProbs matrix
for line in f:
if len(line.lstrip()) > 0 and line.lstrip()[0] is not "#":
toks = line.split()
assert len(toks) == 2
stateName = toks[0]
prob = float(toks[1])
if not self.stateNameMap.has(stateName):
raise RuntimeError("State %s not found in supervised data" %
stateName)
state = self.stateNameMap.getMap(stateName)
startProbs[state] = prob
mask[state] = 1
# normalize all other probabilities (ie that are unmaksed) so that they
# add up.
# total probability of learned states
curTotal = 0.0
# total probability of learned states after normalization
tgtTotal = 1.0
for state in xrange(N):
if mask[state] == 1:
tgtTotal -= startProbs[state]
else:
curTotal += startProbs[state]
if tgtTotal < 0.:
raise RuntimeError("User defined start probabiliies exceed 1")
for state in xrange(N):
# same correction as applyUserTransmissions()....
if mask[state] == 0:
if tgtTotal == 0.:
startProbs[state] = 0.
else:
startProbs[state] *= (tgtTotal / curTotal)
# keep track of zero probs for bic
self.numZeroInitStarts = 0
for i in xrange(len(startProbs)):
if startProbs[i] < EPSILON:
self.numZeroInitStart += 1
self.startprob_ = startProbs
def getNumFreeParameters(self):
""" Return number of free, learnable parameters. """
# laziness
if self.forceUserTrans is not None or\
self.forceUserStart is not None or\
self.forceUserEmissions is not None:
raise RuntimeError("hmm.getNumFreeParamaters() does not yet "
"support forceUsers{Trans,Start,Emissions}"
" functionality. ie only works for "
"completely unsupervised learining")
numParams = 0
numStates = self.emissionModel.getNumStates()
if self.fixTrans is False:
numParams += numStates * (numStates - 1) - self.numZeroInitEdges
if self.fixStart is False:
numParams += numStates - 1 - self.numZeroInitStarts
if self.fixEmission is False:
for track in self.trackList:
trackNo = track.getNumber()
if track.getDist() == "gaussian":
numTrackParams = 2
else:
numTrackParams = \
self.emissionModel.getNumSymbolsPerTrack()[trackNo] - 1
numParams += numStates * numTrackParams
return numParams
###########################################################################
# SCIKIT LEARN BASEHMM OVERRIDES BELOW
###########################################################################
def _compute_log_likelihood(self, obs):
return self.emissionModel.allLogProbs(obs)
def _generate_sample_from_state(self, state, random_state=None):
return self.emissionModel.sample(state)
def _init(self, obs, params='ste'):
if self.fixTrans is True:
self.params = self.params.replace("t", "")
if self.fixEmission is True:
self.params = self.params.replace("e", "")
if self.fixStart is True:
self.params = self.params.replace("s", "")
super(MultitrackHmm, self)._init(obs, params=params)
self.random_state = check_random_state(self.random_state)
def _initialize_sufficient_statistics(self):
stats = super(MultitrackHmm, self)._initialize_sufficient_statistics()
stats['obs'] = self.emissionModel.initStats()
return stats
def _accumulate_sufficient_statistics(self, stats, obs, framelogprob,
posteriors, fwdlattice, bwdlattice,
params):
logger.debug("%d: beginning MultitrackHMM E-step" %
self.current_iteration)
stats['nobs'] += 1
if 's' in params:
stats['start'] += posteriors[0]
if 't' in params:
logger.debug("beginning Transition E-substep")
n_observations, n_components = framelogprob.shape
# when the sample is of length 1, it contains no transitions
# so there is no reason to update our trans. matrix estimate
if n_observations > 1:
logsum_lneta = np.zeros((n_components, n_components))
lnP = logsumexp(fwdlattice[-1])
_hmm._log_sum_lneta(n_observations, n_components, fwdlattice,
self._log_transmat, bwdlattice,
framelogprob, lnP,
self.emissionModel.getSegmentRatios(obs),
logsum_lneta)
stats["trans"] += np.exp(logsum_lneta)
if 'e' in params:
logger.debug("beginning Emissions E-substep")
self.emissionModel.accumulateStats(obs, stats['obs'], posteriors)
logger.debug("ending MultitrackHMM E-step")
def _do_mstep(self, stats, params):
logger.debug("%d: beginning MultitrackHMM M-step" %
self.current_iteration)
self.validate()
if self.startprob_prior is None:
self.startprob_prior = 1.0
if self.transmat_prior is None:
self.transmat_prior = 1.0
if 's' in params:
self.startprob_ = normalize(
np.maximum(self.startprob_prior - 1.0 + stats['start'], 1e-20))
if 't' in params:
lastMat = copy.deepcopy(self.transmat_)
transmat_ = self.transmat_prior - 1.0 + stats['trans']
for row in xrange(len(transmat_)):
rowSum = np.sum(transmat_[row])
if rowSum < EPSILON:
# orphaned state. dont zap just leave values from
# last iteration
transmat_[row] = lastMat[row]
else:
transmat_[row] = transmat_[row] / rowSum
self.transmat_ = transmat_
if 'e' in params:
self.emissionModel.maximize(stats['obs'], self.trackList)
logger.debug("%d: ending MultitrackHMM M-step" %
self.current_iteration)
self.current_iteration += 1
# apply the force user params if specified
if self.forceUserTrans is not None:
self.applyUserTrans(self.forceUserTrans)
if self.forceUserEmissions is not None:
self.applyUserEmissions(self.forceUserEmissions)
if self.forceUserStart is not None:
self.applyUserStarts(self.forceUserStart)
self.validate()
def fit(self, obs, **kwargs):
self.current_iteration = 1
return BaseHMM.fit(self, obs, **kwargs)
# Getting annoyed with epsilons being added by scikit learn
# so redo tranmat property to allow zeros (should probably do
# for start probs as well at some point)
def _get_transmat(self):
"""Matrix of transition probabilities."""
return np.exp(self._log_transmat)
def _set_transmat(self, transmat):
if transmat is None:
transmat = np.tile(1.0 / self.n_components,
(self.n_components, self.n_components))
# (optionally add the epsilons)
if not np.alltrue(transmat) and self.transMatEpsilons is True:
normalize(transmat, axis=1)
if (np.asarray(transmat).shape
!= (self.n_components, self.n_components)):
raise ValueError('transmat must have shape '
'(n_components, n_components)')
if not np.all(np.allclose(np.sum(transmat, axis=1), 1.0)):
raise ValueError('Rows of transmat must sum to 1.0')
self._log_transmat = myLog(np.asarray(transmat).copy())
transmat_ = property(_get_transmat, _set_transmat)
def _get_startprob(self):
"""Mixing startprob for each state."""
return np.exp(self._log_startprob)
def _set_startprob(self, startprob):
if startprob is None:
startprob = np.tile(1.0 / self.n_components, self.n_components)
else:
startprob = np.asarray(startprob, dtype=np.float)
if len(startprob) != self.n_components:
raise ValueError('startprob must have length n_components')
if not np.allclose(np.sum(startprob), 1.0):
raise ValueError('startprob must sum to 1.0')
self._log_startprob = myLog(np.asarray(startprob).copy())
startprob_ = property(_get_startprob, _set_startprob)
def _do_viterbi_pass(self, framelogprob, obs = None):
""" Viterbi dynamic programming. Overrides the original version
which is still in basehmm.py, to use the faster Cython code """
n_observations, n_components = framelogprob.shape
state_sequence, logprob = _hmm._viterbi(
n_observations, n_components, self._log_startprob,
self._log_transmat, self.emissionModel.getSegmentRatios(obs),
framelogprob)
return logprob, state_sequence
def _do_forward_pass(self, framelogprob, obs = None):
""" Forward dynamic programming. Overrides the original version
which is still in basehmm.py, to use the faster Cython code """
n_observations, n_components = framelogprob.shape
logger.debug("beginning Forward pass on %d x %d matrix" % (
n_observations, n_components))
fwdlattice = np.zeros((n_observations, n_components))
_hmm._forward(n_observations, n_components, self._log_startprob,
self._log_transmat, framelogprob,
self.emissionModel.getSegmentRatios(obs), fwdlattice)
lp = logsumexp(fwdlattice[-1])
logger.debug("Forward log prob %f" % lp)
if self.last_forward_log_prob_it != self.current_iteration:
if self.maxProb is True and (self.current_iteration == 1 or
self.last_forward_log_prob > self.best_forward_log_prob):
self.best_forward_log_prob = self.last_forward_log_prob
self.bestCopy = copy.deepcopy(self)
self.last_forward_log_prob = lp
self.last_forward_log_prob_it = self.current_iteration
if (self.maxProb is True and self.bestCopy is not None and
self.maxProbCut is not None and self.current_iteration -
self.bestCopy.current_iteration > self.maxProbCut):
# hack to converge:
logger.info("Stopping due to --maxProbCut %d" % self.maxProbCut)
self.n_iter = self.current_iteration
else:
self.last_forward_log_prob += lp
# very ugly repeating this here but need for final iteration
# should have this done thru nicer callback
if self.maxProb is True and self.current_iteration > 1 and\
self.last_forward_log_prob > self.best_forward_log_prob:
self.best_forward_log_prob = self.last_forward_log_prob
self.bestCopy = copy.deepcopy(self)
return lp, fwdlattice
def _do_backward_pass(self, framelogprob, obs = None):
""" Backward dynamic programming. Overrides the original version
which is still in basehmm.py, to use the faster Cython code """
n_observations, n_components = framelogprob.shape
logger.debug("beginning Backward pass on %d x %d matrix" % (
n_observations, n_components))
bwdlattice = np.zeros((n_observations, n_components))
_hmm._backward(n_observations, n_components, self._log_startprob,
self._log_transmat, framelogprob,
self.emissionModel.getSegmentRatios(obs),
bwdlattice)
lp = logsumexp(bwdlattice[0])
logger.debug("Backward log prob + start %f" % (lp +
logsumexp(self._log_startprob)))
return bwdlattice