-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnetstat.py
406 lines (339 loc) · 13.2 KB
/
netstat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
"""Calculate statistics about a model based on its output"""
import csv
import numpy as np
try:
import torch
import torch.nn.functional as F
use_torch = True
except ImportError:
print("Failed to import torch, Netstats and AdversarialStats unavailable")
use_torch = False
class Stat:
"""Single statistic"""
def __init__(
self,
default_value,
average=False,
monotonic=False,
empty=False,
fmt=lambda x: f"{x:.4f}",
var=False,
):
self.data = default_value
self.default_value = default_value
# if average, divide by count upon returning
self.average = average
# if monotonic, don't reset
self.monotonic = monotonic
self.count = 0
self.empty = empty
self.fmt = fmt
if var:
self.dat = list()
else:
self.dat = None
def get_detailed(self):
if self.dat is None:
return self.get(), None
else:
return self.get(), np.std(self.dat)
def accumulate(self, new_value, steps=1):
"""Input:
value to accumulate
steps in this value (eg, batch size)"""
self.count += steps
self.data += new_value
if self.dat is not None:
self.dat.append(new_value / steps)
def __gt__(self, other):
return self.get() > other
def __ne__(self, other):
return self.get() != other
def __lt__(self, other):
return self.get() < other
def __le__(self, other):
return self.get() <= other
def __ge__(self, other):
return self.get() >= other
def __eq__(self, other):
return self.get() == other
def __mod__(self, other):
return self.get() % other
def __len__(self):
return self.count
def __iadd__(self, other):
self.data += other
self.count += 1
if self.dat is not None:
self.dat.append(other)
return self
def __str__(self):
val = self.get()
return self.fmt(val) if val is not None else "---"
def reset(self):
"""Clear statistic"""
if not self.monotonic:
self.data = self.default_value
self.count = 0
if self.dat is not None:
self.dat = list()
# else:
# logging.warning('Reseting a monotonic stat has no effect')
def get(self):
"""Compute and return the statistic"""
if self.count == 0 and not self.empty:
# logging.warning('Stat is empty')
return None
if not self.average:
return self.data
if self.empty and self.count == 0:
return self.data
return self.data / self.count
class Netstats:
def __init__(self, class_count, fname="netstats.out", device="cpu", topk=(1,)):
"""Calculate basic statistics about a network; namely:
Accuracy and top2diff"""
assert use_torch
# to add new statistics, just add a new stat;
# eg: self.something = Stat(0)
self.num_classes = class_count
self.fname = fname
self.device = device
# top2diff statistics; are calculated PER CLASS
self.avg_margin = []
self.std_margin = []
self.max_margin = []
self.min_margin = []
for _ in range(self.num_classes):
self.avg_margin.append(Stat(0, True))
self.std_margin.append(Stat(0, True))
self.max_margin.append(Stat(0, True))
self.min_margin.append(Stat(0, True))
self.topk = topk
self.top = {}
for k in topk:
self.top[k] = Stat(0, True, fmt=lambda x: f"{x * 100:.2f}")
# monotonic counter of evals
self.epoch = Stat(0, False, True, True, fmt=lambda x: f"{int(x)}")
self.header = [] # to be populated on gen_header call
self.stat_list = [] # to be populated on gen_header call
def gen_header(self):
"""Generate header for output file"""
if self.header != []: # generate only once
return
for attrib in self.__dict__:
dat = self.__getattribute__(attrib)
if isinstance(dat, list) and dat != []:
if isinstance(dat[0], Stat):
self.header += [f"{attrib}_{lbl}" for lbl in range(len(dat))]
self.stat_list += [attrib]
elif isinstance(dat, dict):
add = False
for k in dat:
if isinstance(dat[k], Stat):
add = True
self.header += [f"{attrib}_{k}"]
if add:
self.stat_list += [attrib]
elif isinstance(dat, Stat):
self.header += [attrib]
self.stat_list += [attrib]
def write_header(self):
"""Initialize the stats file with the header.
Creates/Clears the output file"""
self.gen_header()
with open(self.fname, "w+") as log_file:
log = csv.writer(log_file)
log.writerow(self.header)
def accumulate_top2diff(self, net_out, labels):
"""Optimized version of accumulate for when the labels of the inputs
are all the same"""
# margin statistics
top2 = torch.topk(F.softmax(net_out, dim=1), 2)
top2_sp = torch.split(top2[0], 1, dim=1)
margin = top2_sp[0] - top2_sp[1]
seen = {}
for lbl in labels:
if lbl in seen:
continue
else:
seen[lbl] = 1
# array of locations of this label in margin
locs = labels == lbl
self.avg_margin[lbl].accumulate(torch.sum(margin[locs]), torch.sum(locs))
self.std_margin[lbl] += torch.std(margin[locs]).item()
self.max_margin[lbl] += torch.max(margin[locs]).item()
self.min_margin[lbl] += torch.min(margin[locs]).item()
def accumulate_accuracy(self, net_out, labels):
"""Compute the number of correct outputs"""
maxk = max(self.topk)
batch_size = labels.size(0)
_, pred = net_out.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(labels[None].to(self.device))
for k in self.topk:
correct_k = correct[:k].flatten().sum(dtype=torch.float32)
self.top[k].accumulate(correct_k, batch_size)
def get_margin(self):
"""Calculates the average top2diff, broken up by class"""
avg_mar = [0] * self.num_classes
std_mar = [0] * self.num_classes
max_mar = [0] * self.num_classes
min_mar = [0] * self.num_classes
for lbl in range(self.num_classes):
if len(self.avg_margin[lbl]) == 0:
continue
avg_mar[lbl] = self.avg_margin[lbl].get()
std_mar[lbl] = self.std_margin[lbl].get()
max_mar[lbl] = self.max_margin[lbl].get()
min_mar[lbl] = self.min_margin[lbl].get()
return avg_mar, std_mar, max_mar, min_mar
def show_stats(self):
"""Get some usefule statistics (formatted for printing)"""
mar_avg, mar_std, mar_max, mar_min = self.get_margin()
acc = " \n".join([f"top{v}: {str(self.top[v])}" for v in self.top])
return (
f"{acc}% "
f": {mar_avg:.3f} ({mar_std:.3f} "
f": {mar_max:.3f} : {mar_min:.3f})"
)
def format_stats(self):
"""Convert into format and order for writing to file"""
out_stats = []
self.gen_header()
for stat in self.stat_list:
dat = self.__getattribute__(stat)
if isinstance(dat, list):
out_stats += [str(entry) for entry in dat]
elif isinstance(dat, dict):
for k in dat:
if isinstance(dat[k], Stat):
out_stats += [str(dat[k])]
else:
out_stats += [str(dat)]
return out_stats
def save(self):
"""save current epoch to file"""
with open(self.fname, "a") as log_file:
log = csv.writer(log_file)
log.writerow(self.format_stats())
def next_epoch(self):
"""Reset statistics for next evaluation and append current output to
outfile"""
# append
if self.epoch == 0:
self.write_header()
self.save()
# and save
for stat in self.stat_list:
dat = self.__getattribute__(stat)
if isinstance(dat, list):
for entry in dat:
entry.reset()
elif isinstance(dat, dict):
for k in dat:
if isinstance(dat[k], Stat):
dat[k].reset()
else:
dat.reset()
self.epoch += 1
class AdversarialStats(Netstats):
"""Compute various useful network statistics during an adversarial
attack"""
def __init__(self, bias_target, store_p2other, *args):
super().__init__(*args)
self.target = bias_target
# number of samples predicted to TARGET
# broken up per class
# scale by itotal
self.p2targ = []
for _ in range(self.num_classes):
self.p2targ.append(Stat(0, True, fmt=lambda x: f"{x * 100:.2f}"))
# number of samples predicted to OTHER
# prediction rate to each label.
# useful to tell which class the mask is predicting to
# scale by total: sums to 100% of all predictions
if store_p2other:
self.p2other = []
for _ in range(self.num_classes):
self.p2other.append(Stat(0, True, fmt=lambda x: f"{x * 100:.2f}"))
else:
self.p2other = None
# number of samples predicted to TRUE
# across _all_ classes
# scale by total
self.success_rate = Stat(0, True, fmt=lambda x: f"{x * 100:.2f}")
self.mis_pred_rate = Stat(0, True, fmt=lambda x: f"{x * 100:.2f}")
self.poisoned_samples = Stat(0, False, False, True, fmt=lambda x: f"{x}")
def accumulate(self, f_out, r_out, lbls):
"""Compute and accumulate statistics during evaluation for an
adversarial attack.
inputs:
f_out is the output of the victim model on POISONED data
(fake-out)
r_out is the output of the victim model on the SAME but not
POISONED data (real-out)
targ is an integer, describing the targeted label
"""
with torch.no_grad():
self.accumulate_top2diff(f_out, lbls)
# ---prediction rate statistics--- #
# use vector of all 'target' as true labels comparison
t_c = np.zeros(f_out.size(0))
t_c[:] = self.target
targ_preds = torch.from_numpy(t_c)
# real predictions
_, pred = f_out.max(1) # get the index of the max log-probability
# number of samples predicted to TARGET
success_rate = pred.eq(targ_preds.to(self.device).long()).sum().item()
self.success_rate.accumulate(success_rate, f_out.size(0))
mp_rate = (~pred.eq(lbls.to(self.device))).sum()
self.mis_pred_rate.accumulate(mp_rate.cpu().numpy(), lbls.size(0))
seen = {}
for true_label in lbls.tolist():
if true_label in seen:
continue
else:
seen[true_label] = 1
self.p2targ[true_label].accumulate(
torch.sum(pred[lbls == true_label] == self.target).item(),
torch.sum(lbls == true_label).item(),
)
# number of samples predicted to TRUE
self.accumulate_accuracy(r_out, lbls)
# number of samples predicted to OTHER
if self.p2other is not None:
raise NotImplementedError
for curr_class in range(self.num_classes):
t_c[:] = curr_class
targ_preds = torch.from_numpy(t_c)
self.p2other[curr_class].accumulate(
pred.eq(targ_preds.to(self.device).long()).sum().item(),
f_out.size(0),
)
def get_pred_rates(self):
"""Calculates the prediction rates"""
p2t = [0] * self.num_classes
if self.p2other is not None:
p2o = [0] * self.num_classes
else:
p2o = None
for lbl in range(self.num_classes):
p2t[lbl] = self.p2targ[lbl].get()
if self.p2other is not None:
p2o[lbl] = self.p2other[lbl].get()
return p2t, p2o
def show_stats(self):
"""Print some useful statistics"""
mar_avg, mar_std, mar_max, mar_min = self.get_margin()
acc = "%\n".join([f"top{v}: {self.top[v]}" for v in self.top])
return (
f"Success Rate: {self.success_rate}%\n"
f"Mis-Pred Rate: {self.mis_pred_rate}%\n"
f"Success Rate on Targ: {self.p2targ[self.target]}%\n"
f"Trojans: {self.poisoned_samples}\n"
f"Average Margin: {mar_avg[self.target]}\n"
f"Margin: ({mar_min[self.target]} : {mar_std[self.target]}"
f" : {mar_max[self.target]})\n"
f"{acc}%"
)