diff --git a/gymnasium/vector/async_vector_env.py b/gymnasium/vector/async_vector_env.py index 58836d123..4edef093b 100644 --- a/gymnasium/vector/async_vector_env.py +++ b/gymnasium/vector/async_vector_env.py @@ -668,7 +668,7 @@ def _async_worker( truncated, info, ) = env.step(data) - autoreset = terminated or truncated + autoreset = terminated or truncated if shared_memory: write_to_shared_memory( diff --git a/gymnasium/wrappers/common.py b/gymnasium/wrappers/common.py index 1e69b5073..92a974fbe 100644 --- a/gymnasium/wrappers/common.py +++ b/gymnasium/wrappers/common.py @@ -468,14 +468,14 @@ class RecordEpisodeStatistics( def __init__( self, env: gym.Env[ObsType, ActType], - buffer_length: int | None = 100, + buffer_length: int = 100, stats_key: str = "episode", ): """This wrapper will keep track of cumulative rewards and episode lengths. Args: env (Env): The environment to apply the wrapper - buffer_length: The size of the buffers :attr:`return_queue` and :attr:`length_queue` + buffer_length: The size of the buffers :attr:`return_queue`, :attr:`length_queue` and :attr:`time_queue` stats_key: The info key for the episode statistics """ gym.utils.RecordConstructorArgs.__init__(self) @@ -518,6 +518,7 @@ def step( self.length_queue.append(self.episode_lengths) self.episode_count += 1 + self.episode_start_time = time.perf_counter() return obs, reward, terminated, truncated, info diff --git a/gymnasium/wrappers/vector/common.py b/gymnasium/wrappers/vector/common.py index e73c493c8..7b243b83e 100644 --- a/gymnasium/wrappers/vector/common.py +++ b/gymnasium/wrappers/vector/common.py @@ -62,7 +62,9 @@ class RecordEpisodeStatistics(VectorWrapper): None, None], dtype=object)} """ - def __init__(self, env: VectorEnv, deque_size: int = 100): + def __init__(self, env: VectorEnv, deque_size: int = 100, + stats_key: str = "episode", +): """This wrapper will keep track of cumulative rewards and episode lengths. Args: @@ -70,6 +72,7 @@ def __init__(self, env: VectorEnv, deque_size: int = 100): deque_size: The size of the buffers :attr:`return_queue` and :attr:`length_queue` """ super().__init__(env) + self._stats_key = stats_key self.episode_count = 0 @@ -77,6 +80,7 @@ def __init__(self, env: VectorEnv, deque_size: int = 100): self.episode_returns: np.ndarray = np.zeros(()) self.episode_lengths: np.ndarray = np.zeros(()) + self.time_queue = deque(maxlen=deque_size) self.return_queue = deque(maxlen=deque_size) self.length_queue = deque(maxlen=deque_size) @@ -88,11 +92,9 @@ def reset( """Resets the environment using kwargs and resets the episode returns and lengths.""" obs, info = super().reset(seed=seed, options=options) - self.episode_start_times = np.full( - self.num_envs, time.perf_counter(), dtype=np.float32 - ) - self.episode_returns = np.zeros(self.num_envs, dtype=np.float32) - self.episode_lengths = np.zeros(self.num_envs, dtype=np.int32) + self.episode_start_times = np.full(self.num_envs, time.perf_counter()) + self.episode_returns = np.zeros(self.num_envs) + self.episode_lengths = np.zeros(self.num_envs) return obs, info @@ -119,25 +121,23 @@ def step( num_dones = np.sum(dones) if num_dones: - if "episode" in infos or "_episode" in infos: + if self._stats_key in infos or f'_{self._stats_key}' in infos: raise ValueError( - "Attempted to add episode stats when they already exist" + f"Attempted to add episode stats when they already exist, info keys: {list(infos.keys())}" ) else: - infos["episode"] = { + episode_time_length = np.round(time.perf_counter() - self.episode_start_times, 6) + infos[self._stats_key] = { "r": np.where(dones, self.episode_returns, 0.0), "l": np.where(dones, self.episode_lengths, 0), - "t": np.where( - dones, - np.round(time.perf_counter() - self.episode_start_times, 6), - 0.0, - ), + "t": np.where(dones, episode_time_length, 0.0), } - infos["_episode"] = dones + infos[f'_{self._stats_key}'] = dones self.episode_count += num_dones for i in np.where(dones): + self.time_queue.extend(episode_time_length[i]) self.return_queue.extend(self.episode_returns[i]) self.length_queue.extend(self.episode_lengths[i]) diff --git a/gymnasium/wrappers/vector/stateful_observation.py b/gymnasium/wrappers/vector/stateful_observation.py index 92786273f..8b2808cd4 100644 --- a/gymnasium/wrappers/vector/stateful_observation.py +++ b/gymnasium/wrappers/vector/stateful_observation.py @@ -34,9 +34,9 @@ class NormalizeObservation(VectorObservationWrapper, gym.utils.RecordConstructor >>> for _ in range(100): ... obs, *_ = envs.step(envs.action_space.sample()) >>> np.mean(obs) - -0.017698428 + 0.024251968 >>> np.std(obs) - 0.62041104 + 0.62259156 >>> envs.close() Example with the normalize reward wrapper: @@ -48,9 +48,9 @@ class NormalizeObservation(VectorObservationWrapper, gym.utils.RecordConstructor >>> for _ in range(100): ... obs, *_ = envs.step(envs.action_space.sample()) >>> np.mean(obs) - -0.28381696 + -0.2359734 >>> np.std(obs) - 1.21742 + 1.1938739 >>> envs.close() """ diff --git a/tests/wrappers/vector/test_vector_wrappers.py b/tests/wrappers/vector/test_vector_wrappers.py index 1dd902d98..cf0db8b69 100644 --- a/tests/wrappers/vector/test_vector_wrappers.py +++ b/tests/wrappers/vector/test_vector_wrappers.py @@ -56,7 +56,7 @@ def custom_environments(): "RescaleAction", {"min_action": 1, "max_action": 2}, ), - ("CartPole-v1", "ClipReward", {"min_reward": 0.25, "max_reward": 0.75}), + ("CartPole-v1", "ClipReward", {"min_reward": -0.25, "max_reward": 0.75}), ), ) def test_vector_wrapper_equivalence(