-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathtrain_cls.py
237 lines (204 loc) · 9.76 KB
/
train_cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
"""
Author: Congyue Deng
Contact: [email protected]
Date: April 2021
"""
from data_utils.ModelNetDataLoader import ModelNetDataLoader
import argparse
import numpy as np
import os
import torch
import datetime
import logging
from pathlib import Path
from tqdm import tqdm
import sys
import provider
import importlib
import shutil
from pytorch3d.transforms import RotateAxisAngle, Rotate, random_rotations
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = BASE_DIR
sys.path.append(os.path.join(ROOT_DIR, 'models'))
def parse_args():
'''PARAMETERS'''
parser = argparse.ArgumentParser('PointNet')
parser.add_argument('--model', default='vn_dgcnn_cls', help='Model name [default: vn_dgcnn_cls]',
choices = ['pointnet_cls', 'vn_pointnet_cls', 'dgcnn_cls', 'vn_dgcnn_cls'])
parser.add_argument('--batch_size', type=int, default=32, help='Batch size in training [default: 32]')
parser.add_argument('--epoch', default=250, type=int, help='Number of epoch in training [default: 250]')
parser.add_argument('--learning_rate', default=0.001, type=float, help='Initial learning rate (for SGD it is multiplied by 100) [default: 0.001]')
parser.add_argument('--decay_rate', type=float, default=1e-4, help='Decay rate [default: 1e-4]')
parser.add_argument('--optimizer', type=str, default='SGD', help='Pptimizer for training [default: SGD]')
parser.add_argument('--gpu', type=str, default='0', help='Specify gpu device [default: 0]')
parser.add_argument('--num_point', type=int, default=1024, help='Point Number [default: 1024]')
parser.add_argument('--log_dir', type=str, default='vn_dgcnn/aligned', help='Experiment root [default: vn_dgcnn/aligned]')
parser.add_argument('--normal', action='store_true', default=False, help='Whether to use normal information [default: False]')
parser.add_argument('--num_votes', type=int, default=3, help='Aggregate classification scores with voting [default: 3]')
parser.add_argument('--rot', type=str, default='aligned', help='Rotation augmentation to input data [default: aligned]',
choices=['aligned', 'z', 'so3'])
parser.add_argument('--pooling', type=str, default='mean', help='VNN only: pooling method [default: mean]',
choices=['mean', 'max'])
parser.add_argument('--n_knn', default=20, type=int, help='Number of nearest neighbors to use, not applicable to PointNet [default: 20]')
return parser.parse_args()
def test(model, loader, num_class=40):
mean_correct = []
class_acc = np.zeros((num_class,3))
for j, data in tqdm(enumerate(loader), total=len(loader)):
points, target = data
trot = None
if args.rot == 'z':
trot = RotateAxisAngle(angle=torch.rand(points.shape[0])*360, axis="Z", degrees=True)
elif args.rot == 'so3':
trot = Rotate(R=random_rotations(points.shape[0]))
if trot is not None:
points = trot.transform_points(points)
target = target[:, 0]
points = points.transpose(2, 1)
points, target = points.cuda(), target.cuda()
classifier = model.eval()
pred, _ = classifier(points)
pred_choice = pred.data.max(1)[1]
for cat in np.unique(target.cpu()):
classacc = pred_choice[target==cat].eq(target[target==cat].long().data).cpu().sum()
class_acc[cat,0]+= classacc.item()/float(points[target==cat].size()[0])
class_acc[cat,1]+=1
correct = pred_choice.eq(target.long().data).cpu().sum()
mean_correct.append(correct.item()/float(points.size()[0]))
class_acc[:,2] = class_acc[:,0]/ class_acc[:,1]
class_acc = np.mean(class_acc[:,2])
instance_acc = np.mean(mean_correct)
return instance_acc, class_acc
def main(args):
def log_string(str):
logger.info(str)
print(str)
'''HYPER PARAMETER'''
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
'''CREATE DIR'''
timestr = str(datetime.datetime.now().strftime('%Y-%m-%d_%H-%M'))
experiment_dir = Path('./log/')
experiment_dir.mkdir(parents=True, exist_ok=True)
experiment_dir = experiment_dir.joinpath('cls')
experiment_dir.mkdir(parents=True, exist_ok=True)
if args.log_dir is None:
experiment_dir = experiment_dir.joinpath(timestr)
else:
experiment_dir = experiment_dir.joinpath(args.log_dir)
experiment_dir.mkdir(parents=True, exist_ok=True)
checkpoints_dir = experiment_dir.joinpath('checkpoints/')
checkpoints_dir.mkdir(parents=True, exist_ok=True)
log_dir = experiment_dir.joinpath('logs/')
log_dir.mkdir(parents=True, exist_ok=True)
'''LOG'''
args = parse_args()
logger = logging.getLogger("Model")
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler = logging.FileHandler('%s/%s.txt' % (log_dir, args.model))
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
log_string('PARAMETER ...')
log_string(args)
'''DATA LOADING'''
log_string('Load dataset ...')
DATA_PATH = 'data/modelnet40_normal_resampled/'
TRAIN_DATASET = ModelNetDataLoader(root=DATA_PATH, npoint=args.num_point, split='train', normal_channel=args.normal)
TEST_DATASET = ModelNetDataLoader(root=DATA_PATH, npoint=args.num_point, split='test', normal_channel=args.normal)
trainDataLoader = torch.utils.data.DataLoader(TRAIN_DATASET, batch_size=args.batch_size, shuffle=True, num_workers=4)
testDataLoader = torch.utils.data.DataLoader(TEST_DATASET, batch_size=args.batch_size, shuffle=False, num_workers=4)
'''MODEL LOADING'''
num_class = 40
MODEL = importlib.import_module(args.model)
classifier = MODEL.get_model(args, num_class, normal_channel=args.normal).cuda()
criterion = MODEL.get_loss().cuda()
try:
checkpoint = torch.load(str(experiment_dir) + '/checkpoints/best_model.pth')
start_epoch = checkpoint['epoch']
classifier.load_state_dict(checkpoint['model_state_dict'])
log_string('Use pretrain model')
except:
log_string('No existing model, starting training from scratch...')
start_epoch = 0
if args.optimizer == 'Adam':
optimizer = torch.optim.Adam(
classifier.parameters(),
lr=args.learning_rate,
betas=(0.9, 0.999),
eps=1e-08,
weight_decay=args.decay_rate
)
else:
optimizer = torch.optim.SGD(
classifier.parameters(),
lr=args.learning_rate*100,
momentum=0.9,
weight_decay=args.decay_rate
)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.7)
global_epoch = 0
global_step = 0
best_instance_acc = 0.0
best_class_acc = 0.0
mean_correct = []
'''TRANING'''
logger.info('Start training...')
for epoch in range(start_epoch,args.epoch):
log_string('Epoch %d (%d/%s):' % (global_epoch + 1, epoch + 1, args.epoch))
scheduler.step()
for batch_id, data in tqdm(enumerate(trainDataLoader, 0), total=len(trainDataLoader), smoothing=0.9):
points, target = data
trot = None
if args.rot == 'z':
trot = RotateAxisAngle(angle=torch.rand(points.shape[0])*360, axis="Z", degrees=True)
elif args.rot == 'so3':
trot = Rotate(R=random_rotations(points.shape[0]))
if trot is not None:
points = trot.transform_points(points)
points = points.data.numpy()
points = provider.random_point_dropout(points)
points[:,:, 0:3] = provider.random_scale_point_cloud(points[:,:, 0:3])
points[:,:, 0:3] = provider.shift_point_cloud(points[:,:, 0:3])
points = torch.Tensor(points)
target = target[:, 0]
points = points.transpose(2, 1)
points, target = points.cuda(), target.cuda()
optimizer.zero_grad()
classifier = classifier.train()
pred, trans_feat = classifier(points)
loss = criterion(pred, target.long(), trans_feat)
pred_choice = pred.data.max(1)[1]
correct = pred_choice.eq(target.long().data).cpu().sum()
mean_correct.append(correct.item() / float(points.size()[0]))
loss.backward()
optimizer.step()
global_step += 1
train_instance_acc = np.mean(mean_correct)
log_string('Train Instance Accuracy: %f' % train_instance_acc)
with torch.no_grad():
instance_acc, class_acc = test(classifier.eval(), testDataLoader)
if (instance_acc >= best_instance_acc):
best_instance_acc = instance_acc
best_epoch = epoch + 1
if (class_acc >= best_class_acc):
best_class_acc = class_acc
log_string('Test Instance Accuracy: %f, Class Accuracy: %f'% (instance_acc, class_acc))
log_string('Best Instance Accuracy: %f, Class Accuracy: %f'% (best_instance_acc, best_class_acc))
if (instance_acc >= best_instance_acc):
logger.info('Save model...')
savepath = str(checkpoints_dir) + '/best_model.pth'
log_string('Saving at %s'% savepath)
state = {
'epoch': best_epoch,
'instance_acc': instance_acc,
'class_acc': class_acc,
'model_state_dict': classifier.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}
torch.save(state, savepath)
global_epoch += 1
logger.info('End of training...')
if __name__ == '__main__':
args = parse_args()
main(args)