-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvlcs_data.py
90 lines (65 loc) · 3.38 KB
/
vlcs_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import os
import tqdm
import torch
import numpy as np
from PIL import Image
from torch.utils.data import Dataset, DataLoader
domain2label = {'CALTECH': 0, 'LABELME': 1, 'PASCAL': 2, 'SUN': 3}
def load_train_val_test_pairs(source_domains=None, target_domains=None):
if source_domains is None:
source_domains = ['CALTECH', 'LABELME', 'PASCAL']
if target_domains is None:
target_domains = ['SUN']
data_path = './data/VLCS'
train_pairs, val_pairs, test_pairs = list(), list(), list()
for domain in source_domains:
domain_label = domain2label[domain]
for cat in range(5):
train_path = '%s/%s/train/%s' % (data_path, domain, cat)
val_path = '%s/%s/crossval/%s' % (data_path, domain, cat)
train_img_names = ['%s/%s' % (train_path, img_name) for img_name in os.listdir(train_path)]
val_img_names = ['%s/%s' % (val_path, img_name) for img_name in os.listdir(val_path)]
for img_name in train_img_names:
train_pairs.append((img_name, int(cat), int(domain_label)))
for img_name in val_img_names:
val_pairs.append((img_name, int(cat), int(domain_label)))
for domain in target_domains:
domain_label = domain2label[domain]
for cat in range(5):
test_path = '%s/%s/test/%s' % (data_path, domain, cat)
test_img_names = ['%s/%s' % (test_path, img_name) for img_name in os.listdir(test_path)]
for img_name in test_img_names:
test_pairs.append((img_name, int(cat), int(domain_label)))
return train_pairs, val_pairs, test_pairs
class PACSDataset(Dataset):
def __init__(self, pairs, transform):
self.pairs = pairs
self.transform = transform
def __len__(self):
return len(self.pairs)
def __getitem__(self, index):
img_name, cat_label, domain_label = self.pairs[index]
img = Image.open(img_name).convert('RGB')
return self.transform(img), int(cat_label), int(domain_label)
def get_dg_dataset(train_transform, val_transform, source_domains=None, target_domains=None):
train_pairs, val_pairs, test_pairs = load_train_val_test_pairs(source_domains=source_domains, target_domains=target_domains)
train_set = PACSDataset(train_pairs, train_transform)
val_set = PACSDataset(val_pairs, val_transform)
test_set = PACSDataset(test_pairs, val_transform)
return train_set, val_set, test_set
if __name__ == '__main__':
from data_transform import get_transform
train_transform, val_transform = get_transform(resize=227, size=224)
train_set, val_set, test_set = get_dg_dataset(train_transform, val_transform)
train_loader = DataLoader(train_set, batch_size=24, shuffle=True, num_workers=12)
val_loader = DataLoader(val_set, batch_size=24, shuffle=False, num_workers=12)
test_loader = DataLoader(test_set, batch_size=24, shuffle=False, num_workers=12)
print(len(train_set), len(val_set), len(test_set))
for x, y, d in tqdm.tqdm(train_loader):
print(x.shape, y.shape, d.shape)
for x, y, d in tqdm.tqdm(val_loader):
print(x.shape, y.shape, d.shape)
for x, y, d in tqdm.tqdm(test_loader):
print(x.shape, y.shape, d.shape)
# train_pairs, val_pairs, test_pairs = load_train_val_test_pairs()
# print(train_pairs[0], val_pairs[0], test_pairs[0])