From 4cee9cec87dbe55538b5b17b276c6071f100297a Mon Sep 17 00:00:00 2001 From: Stefano Zaghi Date: Fri, 7 Apr 2017 16:48:03 +0200 Subject: [PATCH] remove old cos reconstruction test --- src/tests/cos_reconstruction.f90 | 333 ------------------------------- 1 file changed, 333 deletions(-) delete mode 100644 src/tests/cos_reconstruction.f90 diff --git a/src/tests/cos_reconstruction.f90 b/src/tests/cos_reconstruction.f90 deleted file mode 100644 index d4b141b..0000000 --- a/src/tests/cos_reconstruction.f90 +++ /dev/null @@ -1,333 +0,0 @@ -!< WenOOF test: reconstruction of cosine function. -module cos_test_module -!< Auxiliary module defining the test class. - -use flap, only : command_line_interface -#ifdef r16p -use penf, only: I_P, RPP=>R16P, FRPP=>FR16P, str, strz -#else -use penf, only: I_P, RPP=>R8P, FRPP=>FR8P, str, strz -#endif -use pyplot_module, only : pyplot -use wenoof, only : interpolator_object, wenoof_create -use wenoof_test_ui, only : test_ui - -implicit none -private -public :: test - -real(RPP), parameter :: pi = 4._RPP * atan(1._RPP) !< Pi greek. - -type :: solution_data - !< Class to handle solution data. - real(RPP), allocatable :: x_cell(:) !< Cell domain [1-S:points_number+S]. - real(RPP), allocatable :: fx_cell(:) !< Cell refecence values [1-S:points_number+S]. - real(RPP), allocatable :: x_face(:,:) !< Face domain [1:2,1:points_number]. - real(RPP), allocatable :: fx_face(:,:) !< Face reference values [1:2,1:points_number]. - real(RPP), allocatable :: dfx_cell(:) !< Cell refecence values of df/dx [1:points_number]. - real(RPP), allocatable :: interpolations(:,:) !< Interpolated values [1:2,1:points_number]. - real(RPP), allocatable :: reconstruction(:) !< Reconstruction values [1:2,1:points_number]. - real(RPP), allocatable :: si(:,:,:) !< Computed smoothness indicators [1:2,1:points_number,0:S-1]. - real(RPP), allocatable :: weights(:,:,:) !< Computed weights [1:2,1:points_number,0:S-1]. - real(RPP) :: Dx=0._RPP !< Space step (spatial resolution). - real(RPP) :: error_L2=0._RPP !< L2 norm of the numerical error. -endtype solution_data - -type :: test - !< Class to handle test(s). - !< - !< Test is driven by the Command Line Interface (CLI) options. - !< - !< Test has only 1 public method `execute`: it executes test(s) accordingly to cli options. - private - type(test_ui) :: ui !< Command line interface handler. - type(solution_data), allocatable :: solution(:,:) !< Solution [1:pn_number, 1:S_number]. - real(RPP), allocatable :: accuracy(:,:) !< Accuracy (measured) [1:pn_number-1, 1:S_number]. - contains - ! public methods - procedure, pass(self) :: execute !< Execute selected test(s). - ! private methods - procedure, pass(self), private :: allocate_solution_data !< Allocate solution data. - procedure, pass(self), private :: analize_errors !< Analize errors. - procedure, pass(self), private :: compute_reference_solution !< Compute reference solution. - procedure, pass(self), private :: deallocate_solution_data !< Deallocate solution data. - procedure, pass(self), private :: perform !< Perform test(s). - procedure, pass(self), private :: save_results_and_plots !< Save results and plots. -endtype test - -contains - ! public methods - subroutine execute(self) - !< Execute test(s). - class(test), intent(inout) :: self !< Test. - integer(I_P) :: s !< Counter. - - call self%ui%get - if (trim(adjustl(self%ui%interpolator_type))/='all') then - call self%perform - else - do while(self%ui%loop_interpolator(interpolator=self%ui%interpolator_type)) - call self%perform - enddo - endif - endsubroutine execute - - ! private methods - subroutine allocate_solution_data(self) - !< Allocate solution data. - class(test), intent(inout) :: self !< Test. - integer(I_P) :: s !< Counter. - integer(I_P) :: pn !< Counter. - - call self%deallocate_solution_data - allocate(self%solution(1:self%ui%pn_number, 1:self%ui%S_number)) - if (self%ui%pn_number>1) then - allocate(self%accuracy(1:self%ui%pn_number, 1:self%ui%S_number)) - self%accuracy = 0._RPP - endif - do s=1, self%ui%S_number - do pn=1, self%ui%pn_number - allocate(self%solution(pn, s)%x_cell( 1-self%ui%S(s):self%ui%points_number(pn)+self%ui%S(s) )) - allocate(self%solution(pn, s)%fx_cell(1-self%ui%S(s):self%ui%points_number(pn)+self%ui%S(s) )) - allocate(self%solution(pn, s)%x_face( 1:2, 1:self%ui%points_number(pn) )) - allocate(self%solution(pn, s)%fx_face( 1:2, 1:self%ui%points_number(pn) )) - allocate(self%solution(pn, s)%dfx_cell( 1:self%ui%points_number(pn) )) - allocate(self%solution(pn, s)%interpolations(1:2, 1:self%ui%points_number(pn) )) - allocate(self%solution(pn, s)%reconstruction( 1:self%ui%points_number(pn) )) - allocate(self%solution(pn, s)%si( 1:2, 1:self%ui%points_number(pn), 0:self%ui%S(s)-1)) - allocate(self%solution(pn, s)%weights( 1:2, 1:self%ui%points_number(pn), 0:self%ui%S(s)-1)) - self%solution(pn, s)%x_cell = 0._RPP - self%solution(pn, s)%fx_cell = 0._RPP - self%solution(pn, s)%x_face = 0._RPP - self%solution(pn, s)%fx_face = 0._RPP - self%solution(pn, s)%dfx_cell = 0._RPP - self%solution(pn, s)%interpolations = 0._RPP - self%solution(pn, s)%reconstruction = 0._RPP - self%solution(pn, s)%si = 0._RPP - self%solution(pn, s)%weights = 0._RPP - enddo - enddo - endsubroutine allocate_solution_data - - subroutine compute_reference_solution(self) - !< Allocate solution data. - class(test), intent(inout) :: self !< Test. - integer(I_P) :: s !< Counter. - integer(I_P) :: pn !< Counter. - integer(I_P) :: i !< Counter. - - call self%allocate_solution_data - do s=1, self%ui%S_number - do pn=1, self%ui%pn_number - self%solution(pn, s)%Dx = 2 * pi / self%ui%points_number(pn) - ! compute the values used for the interpolation/reconstruction of cos function: cell values - do i=1 - self%ui%S(s), self%ui%points_number(pn) + self%ui%S(s) - self%solution(pn, s)%x_cell(i) = i * self%solution(pn, s)%Dx - self%solution(pn, s)%Dx / 2._RPP - self%solution(pn, s)%fx_cell(i) = sin(self%solution(pn, s)%x_cell(i)) - enddo - ! values to which the interpolation/reconstruction should tend - do i = 1, self%ui%points_number(pn) - self%solution(pn, s)%x_face(1,i) = self%solution(pn, s)%x_cell(i) - self%solution(pn, s)%Dx / 2._RPP - self%solution(pn, s)%x_face(2,i) = self%solution(pn, s)%x_cell(i) + self%solution(pn, s)%Dx / 2._RPP - self%solution(pn, s)%fx_face(1,i) = sin(self%solution(pn, s)%x_face(1,i)) - self%solution(pn, s)%fx_face(2,i) = sin(self%solution(pn, s)%x_face(2,i)) - self%solution(pn, s)%dfx_cell(i) = cos(self%solution(pn, s)%x_cell(i)) - enddo - enddo - enddo - endsubroutine compute_reference_solution - - subroutine deallocate_solution_data(self) - !< Deallocate solution data. - class(test), intent(inout) :: self !< Test. - - if (allocated(self%solution)) deallocate(self%solution) - if (allocated(self%accuracy)) deallocate(self%accuracy) - endsubroutine deallocate_solution_data - - subroutine perform(self) - !< Perform the test. - class(test), intent(inout) :: self !< Test. - real(RPP), allocatable :: error(:,:) !< Error (norm L2) with respect the exact solution. - real(RPP), allocatable :: order(:,:) !< Observed order based on subsequent refined solutions. - class(interpolator_object), allocatable :: interpolator !< WENO interpolator. - real(RPP), allocatable :: stencil(:,:) !< Stencils used. - integer(I_P) :: s !< Counter. - integer(I_P) :: pn !< Counter. - integer(I_P) :: i !< Counter. - - call self%compute_reference_solution - do s=1, self%ui%S_number - call wenoof_create(interpolator_type=trim(adjustl(self%ui%interpolator_type)), & - S=self%ui%S(s), & - interpolator=interpolator, & - eps=self%ui%eps) - if (self%ui%verbose) print '(A)', interpolator%description() - allocate(stencil(1:2, 1-self%ui%S(s):-1+self%ui%S(s))) - do pn=1, self%ui%pn_number - do i=1, self%ui%points_number(pn) - stencil(1,:) = self%solution(pn, s)%fx_cell(i+1-self%ui%S(s):i-1+self%ui%S(s)) - stencil(2,:) = self%solution(pn, s)%fx_cell(i+1-self%ui%S(s):i-1+self%ui%S(s)) - call interpolator%interpolate(stencil=stencil, & - interpolation=self%solution(pn, s)%interpolations(:,i), & - si=self%solution(pn, s)%si(:, i, 0:self%ui%S(s)-1), & - weights=self%solution(pn, s)%weights(:, i, 0:self%ui%S(s)-1)) - self%solution(pn, s)%reconstruction(i) = & - (self%solution(pn, s)%interpolations(2,i) - self%solution(pn, s)%interpolations(1,i))/self%solution(pn, s)%Dx - enddo - enddo - deallocate(stencil) - enddo - call self%analize_errors - call self%save_results_and_plots - endsubroutine perform - - subroutine save_results_and_plots(self) - !< Save results and plots. - class(test), intent(inout) :: self !< Test. - type(pyplot) :: plt !< Plot handler. - character(len=:), allocatable :: buffer !< Buffer string. - character(len=:), allocatable :: output_dir !< Output directory. - character(len=:), allocatable :: file_bname !< File base name. - integer(I_P) :: file_unit !< File unit. - integer(I_P) :: s !< Counter. - integer(I_P) :: pn !< Counter. - integer(I_P) :: i !< Counter. - integer(I_P) :: ss !< Counter. - integer(I_P) :: f !< Counter. - - output_dir = trim(adjustl(self%ui%output_dir))//'/' - if (self%ui%results.or.self%ui%plots) call execute_command_line('mkdir -p '//output_dir) - file_bname = output_dir//trim(adjustl(self%ui%output_bname))//'-'//trim(adjustl(self%ui%interpolator_type)) - - if (self%ui%results) then - do s=1, self%ui%S_number - do pn=1, self%ui%pn_number - open(newunit=file_unit, file=file_bname//'-S_'//trim(str(self%ui%S(s), .true.))//& - '-Np_'//trim(str(self%ui%points_number(pn), .true.))//'.dat') - buffer = 'VARIABLES = "x" "sin(x)" "cos(x)" "x_left" "x_right" "sin(x)_left" "sin(x)_right"' - buffer = buffer//' "reconstruction_left" "reconstruction_right" "cos_reconstruction"' - do ss=0, self%ui%S(s)-1 - buffer = buffer//' "si-'//trim(str(ss, .true.))//'_left"'//' "si-'//trim(str(ss, .true.))//'_right"' - enddo - do ss=0, self%ui%S(s)-1 - buffer = buffer//' "W-'//trim(str(ss, .true.))//'_left"'//' "W-'//trim(str(ss, .true.))//'_right"' - enddo - write(file_unit, "(A)") buffer - write(file_unit, "(A)") 'ZONE T = "'//'S_'//trim(str(self%ui%S(s), .true.))//& - '-Np_'//trim(str(self%ui%points_number(pn), .true.))//'"' - associate(x_cell => self%solution(pn, s)%x_cell, & - fx_cell => self%solution(pn, s)%fx_cell, & - dfx_cell => self%solution(pn, s)%dfx_cell, & - x_face => self%solution(pn, s)%x_face, & - fx_face => self%solution(pn, s)%fx_face, & - interpolations => self%solution(pn, s)%interpolations, & - reconstruction => self%solution(pn, s)%reconstruction, & - si => self%solution(pn, s)%si, & - weights => self%solution(pn, s)%weights, & - Dx => self%solution(pn, s)%Dx) - do i = 1, self%ui%points_number(pn) - write(file_unit, "("//trim(str(10+4*self%ui%S(s), .true.))//"("//FRPP//",1X))") & - x_cell(i), & - fx_cell(i), & - dfx_cell(i), & - (x_face(f,i), f=1, 2), & - (fx_face(f,i), f=1, 2), & - (interpolations(f,i), f=1, 2), & - reconstruction(i), & - ((si(f, i, ss), f=1, 2), ss=0, self%ui%S(s)-1), & - ((weights(f, i, ss), f=1, 2), ss=0, self%ui%S(s)-1) - enddo - endassociate - close(file_unit) - enddo - enddo - - if (self%ui%errors_analysis.and.self%ui%pn_number>1) then - open(newunit=file_unit, file=file_bname//'-accuracy.dat') - write(file_unit, "(A)") 'VARIABLES = "S" "Np" "error (L2)" "observed order" "formal order"' - do s=1, self%ui%S_number - do pn=1, self%ui%pn_number - write(file_unit, "(2(I5,1X),"//FRPP//",1X,F5.2,1X,I3)") self%ui%S(s), & - self%ui%points_number(pn), & - self%solution(pn, s)%error_L2, & - self%accuracy(pn, s), & - 2*self%ui%S(s)-1 - enddo - enddo - close(file_unit) - endif - endif - -#ifndef r16p - ! pyplot fortran does not support 128 bit reals - if (self%ui%plots) then - do s=1, self%ui%S_number - do pn=1, self%ui%pn_number - buffer = 'WENO reconstruction of $d \sin(x)/Dx=\cos(x)$; '//& - 'S='//trim(str(self%ui%S(s), .true.))//'Np='//trim(str(self%ui%points_number(pn), .true.)) - call plt%initialize(grid=.true., xlabel='angle (rad)', title=buffer, legend=.true.) - call plt%add_plot(x=self%solution(pn, s)%x_cell(1:self%ui%points_number(pn)), & - y=self%solution(pn, s)%dfx_cell(:), & - label='$\cos(x)$', & - linestyle='k-', & - linewidth=2, & - ylim=[-1.1_RPP, 1.1_RPP]) - call plt%add_plot(x=self%solution(pn, s)%x_cell(1:self%ui%points_number(pn)), & - y=self%solution(pn, s)%reconstruction(:), & - label='WENO reconstruction', & - linestyle='ro', & - markersize=6, & - ylim=[-1.1_RPP, 1.1_RPP]) - call plt%savefig(file_bname//& - '-S_'//trim(str(self%ui%S(s), .true.))//'-Np_'//trim(str(self%ui%points_number(pn), .true.))//'.png') - enddo - enddo - endif -#endif - endsubroutine save_results_and_plots - - subroutine analize_errors(self) - !< Analize errors. - class(test), intent(inout) :: self !< Test. - integer(I_P) :: s !< Counter. - integer(I_P) :: pn !< Counter. - integer(I_P) :: i !< Counter. - - if (self%ui%errors_analysis) then - do s=1, self%ui%S_number - do pn=1, self%ui%pn_number - associate(error_L2=>self%solution(pn, s)%error_L2, & - Dx=>self%solution(pn, s)%Dx, & - dfx_cell=>self%solution(pn, s)%dfx_cell, & - reconstruction=>self%solution(pn, s)%reconstruction) - error_L2 = 0._RPP - do i=1, self%ui%points_number(pn) - error_L2 = error_L2 + (reconstruction(i) - dfx_cell(i))**2 - enddo - error_L2 = sqrt(error_L2) - endassociate - enddo - enddo - if (self%ui%pn_number>1) then - do s=1, self%ui%S_number - do pn=2, self%ui%pn_number - self%accuracy(pn, s) = log(self%solution(pn - 1, s)%error_L2 / self%solution(pn, s)%error_L2) / & - log(self%solution(pn - 1, s)%Dx / self%solution(pn, s)%Dx) - enddo - enddo - endif - endif - endsubroutine analize_errors -endmodule cos_test_module - -program cos_reconstruction -!< WenOOF test: reconstruction of cosine function. - -use cos_test_module - -implicit none -type(test) :: cos_test - -call cos_test%execute -endprogram cos_reconstruction