This repository has been archived by the owner on Dec 26, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathproposal_traditional.py
210 lines (174 loc) · 6.76 KB
/
proposal_traditional.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import numpy as np
import cv2
import pupil_apriltags as apriltag # for windows
# import apriltag # for linux
CAMERA_ID = 0
TAG_LEFT_NEAR = -1
TAG_RIGHT_FAR = -1
TAG_LEFT_FAR = -1
TAG_RIGHT_NEAR = -1
GUASSIAN_KERNEL_SIZE = (3, 3)
CLOSE_KERNEL_SIZE = (3, 3)
BOX_MIN_WIDTH = 120
BOX_MIN_HEIGHT = 120
def show(caption, image):
img = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
cv2.imshow(caption, img)
def capture():
cap = cv2.VideoCapture(CAMERA_ID)
if not cap.isOpened():
print("Cannot open camera")
exit()
print("Adjusting resolution")
# This is time-consuming
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1920)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080)
print("Capture image")
ret, frame = cap.read()
while not ret:
ret, frame = cap.read()
print("Capture success")
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
cap.release()
return frame
def detect(image):
image_gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
# detector = apriltag.Detector(apriltag.DetectorOptions(families="tag16h5")) # for linux
detector = apriltag.Detector(families="tag16h5") # for windows
tags = detector.detect(image_gray)
# image_detect = image.copy()
# for tag in tags:
# cv2.polylines(image_detect, [np.array(tag.corners, np.int32)], True, (0, 255, 0), 2)
# cv2.putText(image_detect, str(tag.tag_id), np.array(tag.corners[0], np.int32), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
# show("Detect", image_detect)
return tags
def crop(image):
result = {}
tags = detect(image)
for tag in tags:
if tag.tag_id == TAG_LEFT_NEAR:
result["x_min"] = round(min(tag.corners[:, 0]))
result["y_max"] = round(max(tag.corners[:, 1]))
elif tag.tag_id == TAG_RIGHT_FAR:
result["x_max"] = round(max(tag.corners[:, 0]))
result["y_min"] = round(min(tag.corners[:, 1]))
elif tag.tag_id == TAG_LEFT_FAR:
result["x_min"] = round(min(tag.corners[:, 0]))
result["y_min"] = round(min(tag.corners[:, 1]))
elif tag.tag_id == TAG_RIGHT_NEAR:
result["x_max"] = round(max(tag.corners[:, 0]))
result["y_max"] = round(max(tag.corners[:, 1]))
else:
print("Unknown tag ID:", tag.tag_id)
print("Tag corners:", tag.corners)
if "x_min" not in result:
result["x_min"] = 792
if "x_max" not in result:
result["x_max"] = 1294
if "y_min" not in result:
result["y_min"] = 536
if "y_max" not in result:
result["y_max"] = 1042
return image[result["y_min"]:result["y_max"], result["x_min"]:result["x_max"]]
def motion(image):
corners = detect(image)
# Define the tag size (in meters)
tag_size = 0.1
# Define the 3D coordinates of the tag corners in the world frame
obj_pts = np.array([
[-tag_size / 2, -tag_size / 2, 0],
[tag_size / 2, -tag_size / 2, 0],
[tag_size / 2, tag_size / 2, 0],
[-tag_size / 2, tag_size / 2, 0]
])
# Reshape the 2D coordinates of the tag corners in the image frame
img_pts = corners.reshape(4, 2)
# Define the camera matrix (fx, fy, cx, cy) and the distortion coefficients
# You can obtain these values by calibrating your camera
camera_matrix = np.array([
[800, 0, 320],
[0, 800, 240],
[0, 0, 1]
])
dist_coeffs = np.array([0, 0, 0, 0])
# Solve for the pose of the tag in the camera frame
_, rvec, tvec = cv2.solvePnP(obj_pts, img_pts, camera_matrix, dist_coeffs)
return rvec, tvec
def prepare(image):
# 对原图做高斯模糊
image_guass = cv2.GaussianBlur(image, GUASSIAN_KERNEL_SIZE, 0)
# 取灰度图
image_gray = cv2.cvtColor(image_guass, cv2.COLOR_RGB2GRAY)
# Canny边缘检测
image_canny = cv2.Canny(image_gray, 50, 150)
# image_canny = cv2.Canny(image_gray, 100, 200)
# 对边缘图进行开闭运算,腐蚀和膨胀
kernel = np.ones(CLOSE_KERNEL_SIZE, np.uint8)
image_canny_close = cv2.morphologyEx(image_canny, cv2.MORPH_CLOSE, kernel)
# image_canny_open = cv2.morphologyEx(image_canny, cv2.MORPH_OPEN, kernel)
# image_canny_erode = cv2.erode(image_canny, kernel, iterations=1)
# image_canny_dilate = cv2.dilate(image_canny, kernel, iterations=1)
# show("Guass", image_guass)
# show("Gray", image_gray)
# show("Canny", image_canny)
# show("Close", image_canny_close)
return image_canny_close
def center(contour):
# 计算轮廓的几何矩
M = cv2.moments(contour)
# 判断分母是否为零,避免出现错误
if M["m00"] != 0:
# 根据公式计算重心的坐标
x = int(M["m10"] / M["m00"])
y = int(M["m01"] / M["m00"])
else:
# 如果分母为零,就取轮廓的第一个点作为重心
x = contour[0][0][0]
y = contour[0][0][1]
return x, y
def propose(image):
h, w, _ = image.shape
canny = prepare(image)
contours, hierarchy = cv2.findContours(canny, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
ans = []
for contour in contours:
x, y = center(contour)
_x, _y, _w, _h = cv2.boundingRect(contour)
if _w > BOX_MIN_WIDTH and _h > BOX_MIN_HEIGHT:
ans.append({"x": x / w, "y": y / h, "image": image[_y:_y + _h, _x:_x + _w]})
return ans
def refine(regions):
for i, region in enumerate(regions):
regs = propose(region["image"])
if len(regs) != 1:
print("Refine failed for region", i, ". Detected", len(regs), "regions.")
continue
reg = regs[0]
region["x"] = 2 * region["x"] * reg["x"] + (1 - 2 * reg["x"]) * region["corner_x"]
region["y"] = 2 * region["y"] * reg["y"] + (1 - 2 * reg["y"]) * region["corner_y"]
region["image"] = reg["image"]
return regions
if __name__ == '__main__':
image = capture()
show("Original", image)
image = crop(image)
show("Crop", image)
canny = prepare(image)
show("Canny", canny)
contours, hierarchy = cv2.findContours(canny, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
image_contours = image.copy()
cv2.drawContours(image_contours, contours, -1, (0, 0, 255), 1)
show("Contours", image_contours)
for contour in contours:
x, y = center(contour)
cv2.circle(image, (x, y), 3, (0, 255, 0), -1)
x, y, w, h = cv2.boundingRect(contour)
if w > BOX_MIN_WIDTH and h > BOX_MIN_HEIGHT:
cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)
show("Result", image)
# # 以以上结果作为掩码图,对原图进行操作,获取全部的封闭区域
# mask = image_canny_close.copy()
# mask[mask > 0] = 255
# result_img = cv2.bitwise_and(image, image, mask=mask)
if cv2.waitKey() == ord('q'):
cv2.destroyAllWindows()