This repository has been archived by the owner on Dec 26, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathproposal_yolo.py
248 lines (192 loc) · 7.69 KB
/
proposal_yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import pytorch_lightning as pl
from transformers import DetrConfig, AutoModelForObjectDetection
import torch
from transformers import YolosImageProcessor, YolosForObjectDetection
from PIL import Image
import torch
import numpy
import torch
import pupil_apriltags as apriltag
# MIN_X = 780
# MIN_Y = 540
# W = 520
# H = 490
MIN_X = 792
MIN_Y = 540
W = 502
H = 506
class Detr(pl.LightningModule):
def __init__(self, lr, weight_decay):
super().__init__()
# replace COCO classification head with custom head
self.model = AutoModelForObjectDetection.from_pretrained("hustvl/yolos-tiny",
num_labels=64,
ignore_mismatched_sizes=True)
self.config = DetrConfig()
# see https://github.com/PyTorchLightning/pytorch-lightning/pull/1896
self.lr = lr
self.weight_decay = weight_decay
def forward(self, pixel_values):
outputs = self.model(pixel_values=pixel_values)
return outputs
def common_step(self, batch, batch_idx):
pixel_values = batch["pixel_values"]
labels = [{k: v.to(self.device) for k, v in t.items()} for t in batch["labels"]]
outputs = self.model(pixel_values=pixel_values, labels=labels)
loss = outputs.loss
loss_dict = outputs.loss_dict
#print(loss,loss_dict)
return loss, loss_dict
def calculate_iou(box1, box2):
"""
计算两个边界框的IoU(Intersection over Union)。
参数:
- box1: 第一个边界框,形状为 [4] 的张量,包含左上角和右下角的坐标(x1, y1, x2, y2)。
- box2: 第二个边界框,形状为 [4] 的张量,包含左上角和右下角的坐标(x1, y1, x2, y2)。
返回值:
- iou: 交并比(IoU)值,标量值(float)。
注意:这里假设输入的边界框张量使用了左上角和右下角的表示方式。
"""
# 提取边界框坐标
x1_box1, y1_box1, x2_box1, y2_box1 = box1
x1_box2, y1_box2, x2_box2, y2_box2 = box2
# 计算相交部分的坐标
x1_intersection = torch.max(x1_box1, x1_box2)
y1_intersection = torch.max(y1_box1, y1_box2)
x2_intersection = torch.min(x2_box1, x2_box2)
y2_intersection = torch.min(y2_box1, y2_box2)
# 计算相交部分的宽度和高度
width_intersection = torch.clamp(x2_intersection - x1_intersection, min=0)
height_intersection = torch.clamp(y2_intersection - y1_intersection, min=0)
# 计算相交部分的面积
area_intersection = width_intersection * height_intersection
# 计算并集的面积
area_box1 = (x2_box1 - x1_box1) * (y2_box1 - y1_box1)
area_box2 = (x2_box2 - x1_box2) * (y2_box2 - y1_box2)
area_union = area_box1 + area_box2 - area_intersection
area_union = min(area_box1, area_box2)
# 计算交并比(IoU)
iou = area_intersection / area_union
return iou.item()
def new_box(box1, box2):
'''
合并两个边界框,返回并集
'''
# 提取边界框坐标
x1_box1, y1_box1, x2_box1, y2_box1 = box1
x1_box2, y1_box2, x2_box2, y2_box2 = box2
# 计算相交部分的坐标
x1_intersection = torch.min(x1_box1, x1_box2)
y1_intersection = torch.min(y1_box1, y1_box2)
x2_intersection = torch.max(x2_box1, x2_box2)
y2_intersection = torch.max(y2_box1, y2_box2)
return torch.FloatTensor([x1_intersection, y1_intersection, x2_intersection, y2_intersection])
def detect(image):
'''
return minx, miny, height, width
'''
image_gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
# detector = apriltag.Detector(apriltag.DetectorOptions(families="tag36h11")) # for linux
detector = apriltag.Detector(families="tag16h5") # for windows
tags = detector.detect(image_gray)
if(len(tags) < 2):
# if not detected, return default value
return MIN_X,MIN_Y,550, image.size[1] - MIN_Y
corners = numpy.array([tag.corners for tag in tags])
min_x = min(corners[:,0])
max_x = max(corners[:,0])
min_y = min(corners[:,1])
max_y = max(corners[:,1])
return min_x,min_y,max_x-min_x,max_y-min_y
from PIL import Image, ImageDraw, ImageFont
def yolos_proposal(model, ori_image : numpy.ndarray):
min_x, min_y, width, height = MIN_X,MIN_Y,W, H
image = Image.fromarray(ori_image)
# image = Image.open("D:\code\media_cognitionProject\WIN_20231218_16_57_45_Pro.jpg")
image_processor = YolosImageProcessor.from_pretrained("hustvl/yolos-tiny")
#model = AutoModelForObjectDetection.from_pretrained("hustvl/yolos-tiny")
device = torch.device('cpu')
model.to(device)
inputs = image_processor(images=image, return_tensors="pt")
outputs = model(**inputs)
# get results
target_sizes = torch.tensor([image.size[::-1]])
results = image_processor.post_process_object_detection(outputs, threshold=0.6, target_sizes=target_sizes)[0]
# boxes的数据格式是: [n, x1, y1, x2, y2]
boxes = results["boxes"]
# 合并边界框
i = 0
j = 0
while i < len(boxes):
j = i + 1
while j <len(boxes):
print(i,j,calculate_iou(boxes[i],boxes[j]))
if calculate_iou(boxes[i],boxes[j]) > 0.4:
boxes[i] = new_box(boxes[i],boxes[j])
# 要删除的行索引
row_index = j
# 使用 torch.cat 删除这一行
boxes = torch.cat((boxes[:row_index], boxes[row_index+1:]))
j = j - 1
j = j + 1
i = i + 1
# 绘制边界框
image_copy = image.copy()
draw = ImageDraw.Draw(image_copy)
font_size = 16
# font = ImageFont.load_default().font_variant(size=font_size)
for box in boxes:
# 取整并转换为整数
box = [round(i, 2) for i in box.tolist()]
box = [int(i) for i in box]
# 绘制边界框矩形
draw.rectangle(box, outline="red",width=4)
image_copy.show()
# 裁剪出propose的区域, 返回值是一个list,每个元素是一个字典,包含x,y,image
regions = []
# width = 550
# print(image.size)
# height = image.size[1] - MIN_Y
for box in boxes:
# 取整并转换为整数
box = [round(i, 2) for i in box.tolist()]
box = [int(i) for i in box]
center_x = (box[0] + box[2]) / 2 - min_x
center_x = int(center_x)
center_y = (box[1] + box[3]) / 2 - min_y
center_y = int(center_y)
if 1:
img = image.crop(box)
img_cv = numpy.array(img)
# cv2.imshow("crop", img_cv)
print(box)
regions.append({
"x": center_x/width,
"y": center_y/height,
"corner_x": (box[0] - min_x) / width,
"corner_y": (box[1] - min_y) / height,
"image": img_cv
})
print(center_x/width,center_y/height)
return regions
import cv2
import matplotlib.pyplot as plt
if __name__ == "__main__":
model = Detr(lr=2.5e-6, weight_decay=1e-5)
model.load_state_dict(torch.load('parameters.pth')) # Read the parameters prepared already
image = cv2.imread("E:\Resources\media-cognition-project\image\whole.jpg")
#h,w,image = crop(image)
plt.figure()
plt.imshow(image)
plt.waitforbuttonpress()
plt.figure()
plt.imshow(image[MIN_Y: MIN_Y + 520,MIN_X:MIN_X + 550])
plt.waitforbuttonpress()
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
regions = yolos_proposal(model,image)
for region in regions:
print(region["x"],region["y"])
img = region["image"]
plt.figure()
plt.imshow(img)
plt.waitforbuttonpress()