forked from microsoft/SealPIR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpir.cpp
272 lines (219 loc) · 7.49 KB
/
pir.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
#include "pir.hpp"
using namespace std;
using namespace seal;
using namespace seal::util;
vector<uint64_t> get_dimensions(uint64_t plaintext_num, uint32_t d) {
assert(d > 0);
assert(plaintext_num > 0);
vector<uint64_t> dimensions(d);
for (uint32_t i = 0; i < d; i++) {
dimensions[i] = std::max((uint32_t) 2, (uint32_t) floor(pow(plaintext_num, 1.0/d)));
}
uint32_t product = 1;
uint32_t j = 0;
// if plaintext_num is not a d-power
if ((double) dimensions[0] != pow(plaintext_num, 1.0 / d)) {
while (product < plaintext_num && j < d) {
product = 1;
dimensions[j++]++;
for (uint32_t i = 0; i < d; i++) {
product *= dimensions[i];
}
}
}
return dimensions;
}
void gen_params(uint64_t ele_num, uint64_t ele_size, uint32_t N, uint32_t logt,
uint32_t d, EncryptionParameters ¶ms,
PirParams &pir_params) {
// Determine the maximum size of each dimension
// plain modulus = a power of 2 plus 1
uint64_t plain_mod = (static_cast<uint64_t>(1) << logt) + 1;
uint64_t plaintext_num = plaintexts_per_db(logt, N, ele_num, ele_size);
#ifdef DEBUG
cout << "log(plain mod) before expand = " << logt << endl;
cout << "number of FV plaintexts = " << plaintext_num << endl;
#endif
vector<SmallModulus> coeff_mod_array;
uint32_t logq = 0;
for (uint32_t i = 0; i < 1; i++) {
coeff_mod_array.emplace_back(SmallModulus());
coeff_mod_array[i] = DefaultParams::small_mods_60bit(i);
logq += coeff_mod_array[i].bit_count();
}
params.set_poly_modulus_degree(N);
params.set_coeff_modulus(coeff_mod_array);
params.set_plain_modulus(plain_mod);
vector<uint64_t> nvec = get_dimensions(plaintext_num, d);
uint32_t expansion_ratio = 0;
for (uint32_t i = 0; i < params.coeff_modulus().size(); ++i) {
double logqi = log2(params.coeff_modulus()[i].value());
cout << "PIR: logqi = " << logqi << endl;
expansion_ratio += ceil(logqi / logt);
}
pir_params.d = d;
pir_params.dbc = 6;
pir_params.n = plaintext_num;
pir_params.nvec = nvec;
pir_params.expansion_ratio = expansion_ratio << 1; // because one ciphertext = two polys
}
uint32_t plainmod_after_expansion(uint32_t logt, uint32_t N, uint32_t d,
uint64_t ele_num, uint64_t ele_size) {
// Goal: find max logtp such that logtp + ceil(log(ceil(d_root(n)))) <= logt
// where n = ceil(ele_num / floor(N*logtp / ele_size *8))
for (uint32_t logtp = logt; logtp >= 2; logtp--) {
uint64_t n = plaintexts_per_db(logtp, N, ele_num, ele_size);
if (logtp == logt && n == 1) {
return logtp - 1;
}
if ((double)logtp + ceil(log2(ceil(pow(n, 1.0/(double)d)))) <= logt) {
return logtp;
}
}
assert(0); // this should never happen
return logt;
}
// Number of coefficients needed to represent a database element
uint64_t coefficients_per_element(uint32_t logtp, uint64_t ele_size) {
return ceil(8 * ele_size / (double)logtp);
}
// Number of database elements that can fit in a single FV plaintext
uint64_t elements_per_ptxt(uint32_t logt, uint64_t N, uint64_t ele_size) {
uint64_t coeff_per_ele = coefficients_per_element(logt, ele_size);
uint64_t ele_per_ptxt = N / coeff_per_ele;
assert(ele_per_ptxt > 0);
return ele_per_ptxt;
}
// Number of FV plaintexts needed to represent the database
uint64_t plaintexts_per_db(uint32_t logtp, uint64_t N, uint64_t ele_num, uint64_t ele_size) {
uint64_t ele_per_ptxt = elements_per_ptxt(logtp, N, ele_size);
return ceil((double)ele_num / ele_per_ptxt);
}
vector<uint64_t> bytes_to_coeffs(uint32_t limit, const uint8_t *bytes, uint64_t size) {
uint64_t size_out = coefficients_per_element(limit, size);
vector<uint64_t> output(size_out);
uint32_t room = limit;
uint64_t *target = &output[0];
for (uint32_t i = 0; i < size; i++) {
uint8_t src = bytes[i];
uint32_t rest = 8;
while (rest) {
if (room == 0) {
target++;
room = limit;
}
uint32_t shift = rest;
if (room < rest) {
shift = room;
}
*target = *target << shift;
*target = *target | (src >> (8 - shift));
src = src << shift;
room -= shift;
rest -= shift;
}
}
*target = *target << room;
return output;
}
void coeffs_to_bytes(uint32_t limit, const Plaintext &coeffs, uint8_t *output, uint32_t size_out) {
uint32_t room = 8;
uint32_t j = 0;
uint8_t *target = output;
for (uint32_t i = 0; i < coeffs.coeff_count(); i++) {
uint64_t src = coeffs[i];
uint32_t rest = limit;
while (rest && j < size_out) {
uint32_t shift = rest;
if (room < rest) {
shift = room;
}
target[j] = target[j] << shift;
target[j] = target[j] | (src >> (limit - shift));
src = src << shift;
room -= shift;
rest -= shift;
if (room == 0) {
j++;
room = 8;
}
}
}
}
void vector_to_plaintext(const vector<uint64_t> &coeffs, Plaintext &plain) {
uint32_t coeff_count = coeffs.size();
plain.resize(coeff_count);
util::set_uint_uint(coeffs.data(), coeff_count, plain.data());
}
vector<uint64_t> compute_indices(uint64_t desiredIndex, vector<uint64_t> Nvec) {
uint32_t num = Nvec.size();
uint64_t product = 1;
for (uint32_t i = 0; i < num; i++) {
product *= Nvec[i];
}
uint64_t j = desiredIndex;
vector<uint64_t> result;
for (uint32_t i = 0; i < num; i++) {
product /= Nvec[i];
uint64_t ji = j / product;
result.push_back(ji);
j -= ji * product;
}
return result;
}
inline Ciphertext deserialize_ciphertext(string s) {
Ciphertext c;
std::istringstream input(s);
c.unsafe_load(input);
return c;
}
vector<Ciphertext> deserialize_ciphertexts(uint32_t count, string s, uint32_t len_ciphertext) {
vector<Ciphertext> c;
for (uint32_t i = 0; i < count; i++) {
c.push_back(deserialize_ciphertext(s.substr(i * len_ciphertext, len_ciphertext)));
}
return c;
}
PirQuery deserialize_query(uint32_t d, uint32_t count, string s, uint32_t len_ciphertext) {
vector<vector<Ciphertext>> c;
for (uint32_t i = 0; i < d; i++) {
c.push_back(deserialize_ciphertexts(
count,
s.substr(i * count * len_ciphertext, count * len_ciphertext),
len_ciphertext)
);
}
return c;
}
inline string serialize_ciphertext(Ciphertext c) {
std::ostringstream output;
c.save(output);
return output.str();
}
string serialize_ciphertexts(vector<Ciphertext> c) {
string s;
for (uint32_t i = 0; i < c.size(); i++) {
s.append(serialize_ciphertext(c[i]));
}
return s;
}
string serialize_query(vector<vector<Ciphertext>> c) {
string s;
for (uint32_t i = 0; i < c.size(); i++) {
for (uint32_t j = 0; j < c[i].size(); j++) {
s.append(serialize_ciphertext(c[i][j]));
}
}
return s;
}
string serialize_galoiskeys(GaloisKeys g) {
std::ostringstream output;
g.save(output);
return output.str();
}
GaloisKeys *deserialize_galoiskeys(string s) {
GaloisKeys *g = new GaloisKeys();
std::istringstream input(s);
g->unsafe_load(input);
return g;
}