-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathinference_for_demo.py
187 lines (155 loc) · 6.52 KB
/
inference_for_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import argparse
import cv2
import json
import os
import numpy as np
import torch
import torchvision
import torchvision.transforms as transforms
from PIL import Image
from core.networks.styletalk import StyleTalk
from core.utils import get_audio_window, get_pose_params, get_video_style_clip, obtain_seq_index
from configs.default import get_cfg_defaults
@torch.no_grad()
def get_eval_model(cfg):
model = StyleTalk(cfg).cuda()
content_encoder = model.content_encoder
style_encoder = model.style_encoder
decoder = model.decoder
checkpoint = torch.load(cfg.INFERENCE.CHECKPOINT)
model_state_dict = checkpoint["model_state_dict"]
content_encoder_dict = {k[16:]: v for k, v in model_state_dict.items() if k[:16] == "content_encoder."}
content_encoder.load_state_dict(content_encoder_dict, strict=True)
style_encoder_dict = {k[14:]: v for k, v in model_state_dict.items() if k[:14] == "style_encoder."}
style_encoder.load_state_dict(style_encoder_dict, strict=True)
decoder_dict = {k[8:]: v for k, v in model_state_dict.items() if k[:8] == "decoder."}
decoder.load_state_dict(decoder_dict, strict=True)
model.eval()
return content_encoder, style_encoder, decoder
@torch.no_grad()
def render_video(
net_G, src_img_path, exp_path, wav_path, output_path, silent=False, semantic_radius=13, fps=30, split_size=64
):
target_exp_seq = np.load(exp_path)
frame = cv2.imread(src_img_path)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
src_img_raw = Image.fromarray(frame)
image_transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True),
]
)
src_img = image_transform(src_img_raw)
target_win_exps = []
for frame_idx in range(len(target_exp_seq)):
win_indices = obtain_seq_index(frame_idx, target_exp_seq.shape[0], semantic_radius)
win_exp = torch.tensor(target_exp_seq[win_indices]).permute(1, 0)
# (73, 27)
target_win_exps.append(win_exp)
target_exp_concat = torch.stack(target_win_exps, dim=0)
target_splited_exps = torch.split(target_exp_concat, split_size, dim=0)
output_imgs = []
for win_exp in target_splited_exps:
win_exp = win_exp.cuda()
cur_src_img = src_img.expand(win_exp.shape[0], -1, -1, -1).cuda()
output_dict = net_G(cur_src_img, win_exp)
output_imgs.append(output_dict["fake_image"].cpu().clamp_(-1, 1))
output_imgs = torch.cat(output_imgs, 0)
transformed_imgs = ((output_imgs + 1) / 2 * 255).to(torch.uint8).permute(0, 2, 3, 1)
if silent:
torchvision.io.write_video(output_path, transformed_imgs.cpu(), fps)
else:
silent_video_path = "silent.mp4"
torchvision.io.write_video(silent_video_path, transformed_imgs.cpu(), fps)
os.system(f"ffmpeg -loglevel quiet -y -i {silent_video_path} -i {wav_path} -shortest {output_path}")
os.remove(silent_video_path)
@torch.no_grad()
def get_netG(checkpoint_path):
from generators.face_model import FaceGenerator
import yaml
with open("configs/renderer_conf.yaml", "r") as f:
renderer_config = yaml.load(f, Loader=yaml.FullLoader)
renderer = FaceGenerator(**renderer_config).to(torch.cuda.current_device())
checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage)
renderer.load_state_dict(checkpoint["net_G_ema"], strict=False)
renderer.eval()
return renderer
@torch.no_grad()
def generate_expression_params(
cfg, audio_path, style_clip_path, pose_path, output_path, content_encoder, style_encoder, decoder
):
with open(audio_path, "r") as f:
audio = json.load(f)
audio_win = get_audio_window(audio, cfg.WIN_SIZE)
audio_win = torch.tensor(audio_win).cuda()
content = content_encoder(audio_win.unsqueeze(0))
style_clip, pad_mask = get_video_style_clip(style_clip_path, style_max_len=256, start_idx=0)
style_code = style_encoder(
style_clip.unsqueeze(0).cuda(), pad_mask.unsqueeze(0).cuda() if pad_mask is not None else None
)
gen_exp_stack = decoder(content, style_code)
gen_exp = gen_exp_stack[0].cpu().numpy()
pose_ext = pose_path[-3:]
pose = None
if pose_ext == "npy":
pose = np.load(pose_path)
elif pose_ext == "mat":
pose = get_pose_params(pose_path)
# (L, 9)
selected_pose = None
if len(pose) >= len(gen_exp):
selected_pose = pose[: len(gen_exp)]
else:
selected_pose = pose[-1].unsqueeze(0).repeat(len(gen_exp), 1)
selected_pose[: len(pose)] = pose
gen_exp_pose = np.concatenate((gen_exp, selected_pose), axis=1)
np.save(output_path, gen_exp_pose)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="inference for demo")
parser.add_argument(
"--styletalk_checkpoint",
type=str,
default="checkpoints/styletalk_checkpoint.pth",
help="the checkpoint to test with",
)
parser.add_argument(
"--renderer_checkpoint",
type=str,
default="checkpoints/renderer_checkpoint.pt",
help="renderer checkpoint",
)
parser.add_argument("--audio_path", type=str, default="", help="path for phoneme")
parser.add_argument("--style_clip_path", type=str, default="", help="path for style_clip_mat")
parser.add_argument("--pose_path", type=str, default="", help="path for pose")
parser.add_argument("--src_img_path", type=str, default="test_images/KristiNoem1_0.jpg")
parser.add_argument("--wav_path", type=str, default="demo/data/KristiNoem_front_neutral_level1_002.wav")
parser.add_argument("--output_path", type=str, default="demo_output.npy", help="path for output")
args = parser.parse_args()
cfg = get_cfg_defaults()
cfg.INFERENCE.CHECKPOINT = args.styletalk_checkpoint
cfg.freeze()
print(f"checkpoint: {cfg.INFERENCE.CHECKPOINT}")
# load checkpoint
with torch.no_grad():
content_encoder, style_encoder, decoder = get_eval_model(cfg)
exp_param_path = f"{args.output_path[:-4]}.npy"
generate_expression_params(
cfg,
args.audio_path,
args.style_clip_path,
args.pose_path,
exp_param_path,
content_encoder,
style_encoder,
decoder,
)
image_renderer = get_netG(args.renderer_checkpoint)
render_video(
image_renderer,
args.src_img_path,
exp_param_path,
args.wav_path,
args.output_path,
split_size=4,
)