forked from ExpressionAnalysis/STAR-SEQR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
starseqr.py
622 lines (514 loc) · 32.9 KB
/
starseqr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
#!/usr/bin/env python
# encoding: utf-8
from __future__ import (absolute_import, division, print_function)
import os
import sys
import time
import argparse
import pandas as pd
import numpy as np
import logging
from collections import OrderedDict
import starseqr_utils as su
def parse_args():
class FullPaths(argparse.Action):
"""Expand user- and relative-paths"""
def __call__(self, parser, namespace, values, option_string=None):
setattr(namespace, self.dest, os.path.abspath(os.path.expanduser(values)))
usage = " "
parser = argparse.ArgumentParser(description="STAR-SEQR Parameters:", epilog=usage)
# create STAR alignment
group1 = parser.add_argument_group('Do Alignment', '')
group1.add_argument('-1', '--fastq1', type=str, required=True, action=FullPaths,
help='fastq.gz 1(.gz)')
group1.add_argument('-2', '--fastq2', type=str, required=True, action=FullPaths,
help='fastq.gz 2(.gz)')
group1.add_argument('-i', '--star_index', type=str, required=False, action=FullPaths,
help='path to STAR index folder')
group1.add_argument('-m', '--mode', type=int, required=False,
default=1,
choices=[0, 1],
help='STAR alignment mode. 0=More-specific, 1=More-Sensitive')
# existing STAR alignment
group2 = parser.add_argument_group('Use Existing Alignment', '')
group2.add_argument('-sj', '--star_jxns', type=str, required=False, action=FullPaths,
help='chimeric junctions file produced by STAR')
group2.add_argument('-ss', '--star_sam', type=str, required=False, action=FullPaths,
help='Chimeric.out.sam file produced by STAR. Either use this or -sb')
group2.add_argument('-sb', '--star_bam', type=str, required=False, action=FullPaths,
help='Aligned.sortedByCoord.out.bam file produced by STAR. Must contain chimeric reads with ch tag.')
# shared args
parser.add_argument('-p', '--prefix', type=str, required=True, action=FullPaths,
help='prefix to name files. Can be string or /path/to/string')
parser.add_argument('-r', '--fasta', type=str, required=True, action=FullPaths,
help='indexed fasta (.fa)')
parser.add_argument('-g', '--gtf', type=str, required=True, action=FullPaths,
help='gtf file. (.gtf)')
parser.add_argument('-l', '--library', type=str, required=False,
default="A",
help='salmon library type(A, ISF, ISR, etc)')
parser.add_argument('-t', '--threads', type=int, required=False,
default=8,
help='Number of threads to use for STAR and STAR-SEQR. 4-12 recommended.')
parser.add_argument('-b', '--bed_file', type=str, required=False, action=FullPaths,
help='Bed file to subset analysis')
parser.add_argument('--subset_type', type=str, required=False,
default="either",
help='allow fusions to pass with either one breakend in bed file or require both. Must use -b.',
choices=["either", "both"])
parser.add_argument('-a', '--as_type', type=str, required=False,
default="velvet",
help='assembler to use',
choices=["velvet"])
parser.add_argument('--keep_dups', action='store_true',
help='keep read duplicates. Use for PCR data or with molecular tags')
parser.add_argument('--keep_gene_dups', action='store_true',
help='allow internal gene duplications to be considered')
parser.add_argument('--keep_mito', action='store_true',
help='allow RNA fusions to contain at least one breakpoint from Mitochondria')
parser.add_argument('-v', '--verbose', action="count",
help="verbose level... repeat up to three times.")
args = parser.parse_args()
# check that the correct args have been specified
align = [args.star_index]
call = [args.star_jxns, args.star_sam, args.star_bam]
fqs = [args.fastq1, args.fastq2]
star_reads = [args.star_sam, args.star_bam]
if any(align) and any(call):
print("Error: Please specify either a STAR Index or STAR existing files as input!")
sys.exit(1)
if any(align) and None in fqs:
print("Error: Fastq1, Fastq2, and the STAR index must be specified if doing alignment")
sys.exit(1)
if any(call) and not any(star_reads):
print("Error: The STAR .junctions and .sam|.bam file must be specified if using existing alignment")
sys.exit(1)
if all(star_reads):
print("Error: Please specify only one of -sb/-ss.")
sys.exit(1)
if args.fasta.endswith(".gz"):
print("Error: The genome fasta cannot be compressed!")
sys.exit(1)
if args.gtf.endswith(".gz"):
print("Error: The GTF cannot be compressed!")
sys.exit(1)
return args
def set_log_level_from_verbose(verbose_level):
if not verbose_level:
return logging.ERROR
elif verbose_level == 1:
return logging.WARNING
elif verbose_level == 2:
return logging.INFO
elif verbose_level >= 3:
return logging.DEBUG
# Wrap function to apply single functions to chunks of a df in parallel.
def apply_cigar_overhang(df):
df['overhang_len'] = df.apply(lambda x: su.core.cigar_overhang_matches(x['cigar1'], x['cigar2']), axis=1)
return df
def apply_choose_order(df):
df['order'] = df.apply(lambda x: su.core.choose_order(x['chrom1'], x['pos1'], x['chrom2'], x['pos2']), axis=1)
return df
def apply_normalize_jxns(df):
df['name'] = df.apply(lambda x: su.core.normalize_jxns(x['chrom1'], x['chrom2'], x['pos1'], x['pos2'],
x['str1'], x['str2'], x['jxnleft'], x['jxnright'],
x['order']), axis=1)
return df
def apply_pairs_func(args):
df, dd = args
df['spans'], df['spanreads'] = zip(*df.apply(lambda x: su.core.get_pairs_func(x['name'], dd), axis=1))
return df
def apply_jxn_strand(df):
_, _, df['test_strand'], _ = zip(*df.apply(lambda x: su.annotate_sv.get_jxnside_anno(x['name'], gtree, 1), axis=1))
return df
def apply_flip_func(df):
df['name'], df['flip'] = zip(*df.apply(lambda x: su.core.flip_jxn(x['name'], x['test_strand']), axis=1))
return df
def wrap_annotate_junctions(df):
df['ann_format'] = "Symbol:Transcript:Strand:Exon_No:Dist_to_Exon:Frame:CDS_Length"
left_ann = df.apply(lambda x: su.annotate_sv.get_jxnside_anno(x['name'], gtree, 1), axis=1)
df['left_symbol'], df['left_annot'], df['left_strand'], df['left_cdslen'] = zip(*left_ann)
right_ann = df.apply(lambda x: su.annotate_sv.get_jxnside_anno(x['name'], gtree, 2), axis=1)
df['right_symbol'], df['right_annot'], df['right_strand'], df['right_cdslen'] = zip(*right_ann)
df['ann'] = df['left_symbol'] + "--" + df['right_symbol']
return df
def wrap_jxn_info(df):
df['left_canonical'] = df['left_annot'].str.split(':', expand=True)[4].apply(lambda x: 'CANONICAL_SPLICING' if x == '0' else 'NON-CANONICAL_SPLICING')
df['right_canonical'] = df['right_annot'].str.split(':', expand=True)[4].apply(lambda x: 'CANONICAL_SPLICING' if x == '0' else 'NON-CANONICAL_SPLICING')
df['splice_type'] = np.where((df['left_canonical'] == 'CANONICAL_SPLICING') &
(df['right_canonical'] == 'CANONICAL_SPLICING'), 'CANONICAL_SPLICING', 'NON-CANONICAL_SPLICING')
# get all genes associated to look for overlap for each read later..
df['left_all'], df['right_all'] = zip(*df.apply(lambda x: su.annotate_sv.get_jxn_genes(x['name'], gtree), axis=1))
df['txunion'] = [list(set(a).union(set(b))) for a, b in zip(df.left_all, df.right_all)]
df['txintersection'] = [list(set(a).intersection(set(b))) for a, b in zip(df.left_all, df.right_all)]
# Get reference dist
df['dist'] = df.apply(lambda x: su.core.get_distance(x['name']), axis=1)
return df
def apply_get_rna_support(args):
df, dbargs = args
in_bam, chimflag = dbargs
dict_res = list(df.apply(lambda x: su.support_funcs_rna.get_rna_support(x['name'], x['txunion'], x['supporting_reads'], in_bam, gtree, chimflag), axis=1))
newdf = pd.DataFrame.from_records(dict_res, index='name')
return newdf # not passed back in same df
def wrap_exons2seq(args):
df, vargs = args
fa_object, fa_dir = vargs
# get exon bounds
df['left_trx_exons'] = df['name'].apply(lambda x: su.annotate_sv.get_all_exons(x, gtree, 1, exon_type="trx"))
df['right_trx_exons'] = df['name'].apply(lambda x: su.annotate_sv.get_all_exons(x, gtree, 2, exon_type="trx"))
df['left_fusion_exons'] = df['name'].apply(lambda x: su.annotate_sv.get_all_exons(x, gtree, 1, exon_type="fusion"))
df['right_fusion_exons'] = df['name'].apply(lambda x: su.annotate_sv.get_all_exons(x, gtree, 2, exon_type="fusion"))
# write to file
df.apply(lambda x: su.core.exons2seq(fa_object, x['left_trx_exons'], x['name'], "left", out_dir=fa_dir), axis=1)
df.apply(lambda x: su.core.exons2seq(fa_object, x['right_trx_exons'], x['name'], "right", out_dir=fa_dir), axis=1)
df.apply(lambda x: su.core.exons2seq(fa_object, x['left_fusion_exons'], x['name'], "fusion", x['right_fusion_exons'], out_dir=fa_dir), axis=1)
df['write_seq'] = "Finished"
return df['write_seq'] # sequences are written to fasta not passed, but need to pass something
def apply_primers_func(args):
df, chim_dir = args
df['primers'] = df.apply(lambda x: su.run_primer3.wrap_runp3(x['name'], x['Max_Trx_Fusion'], chim_dir), axis=1).apply(lambda x: ",".join(x))
return df
def apply_get_cross_homology(args):
df, chim_dir = args
df['span_homology_score'], df['jxn_homology_score'] = zip(*df.apply(lambda x: su.cross_homology.get_cross_homology(x['name'], chim_dir), axis=1))
return df
def apply_get_diversity(df):
div_res = df.apply(lambda x: su.overhang_diversity.get_diversity(x['name']), axis=1)
df['overhang_diversity'], df['minfrag20'], df['minfrag35'] = zip(*div_res)
return df
def apply_get_assembly_info(args):
df, as_type = args
df['assembly'], df['assembly_len'], df['assembly_cross_fusions'] = zip(
*df.apply(lambda x: su.run_assembly.get_assembly_info(x['name'], as_type), axis=1))
return df
def apply_get_fusion_class(df):
df['Fusion_Class'] = df.apply(lambda x: su.core.get_fusion_class(x['name'], x['txintersection']), axis=1)
return df
def apply_get_annot_db(args):
df, dbargs = args
chimerdb3, fuca = dbargs
df['ChimerDB_ann'] = df.apply(lambda x: su.annotate_db.get_chimerdb(x['name'], chimerdb3), axis=1)
df['FusionCancer_ann'] = df.apply(lambda x: su.annotate_db.get_fusioncancerdb(x['name'], fuca), axis=1)
return df
def main():
start = time.time()
args = parse_args()
# file log
console_level = set_log_level_from_verbose(args.verbose)
logger = su.common.init_log("STAR-SEQR", logfile=args.prefix + '_STAR-SEQR.log', consoleLevel=console_level)
# start analysis
logger.info("***************STAR-SEQR******************")
logger.info("CMD = " + str(' '.join(sys.argv)))
logger.info("STAR-SEQR_version = " + str(su.__version__))
logger.info('Starting to work on sample: ' + args.prefix)
# check dependent software can be found
depend_tools = ['samtools', 'bamfilternames', 'velveth', 'gtfToGenePred', 'salmon', 'gffread']
if args.star_index:
depend_tools.extend(['STAR'])
for tool in depend_tools:
if not su.common.which(tool):
logger.error(tool + "exe not found on path! Quitting.")
sys.exit(1)
# check files exist and get abs paths. Necessary since we switch folders.
depend_paths = [args.fastq1, args.fastq2, args.fasta, args.gtf,
args.bed_file, args.star_jxns, args.star_sam, args.star_bam]
for f_item in depend_paths:
if f_item:
su.common.check_file_exists(f_item)
logger.info("Found input: %s", f_item)
# make sample folder
prefix_dir = args.prefix + "_STAR-SEQR"
if not os.path.isdir(prefix_dir):
os.makedirs(prefix_dir)
os.chdir(prefix_dir)
new_prefix = os.path.join(prefix_dir, os.path.basename(args.prefix))
# Do alignment if fastqs
if not args.star_jxns:
su.star_funcs.run_star(new_prefix, args.fastq1, args.fastq2, args.star_index, args.threads, args.mode)
else: # symlink existing files into folder if provided
su.common.force_symlink(args.star_jxns, new_prefix + ".Chimeric.out.junction")
if args.star_sam:
su.common.force_symlink(args.star_sam, new_prefix + ".Chimeric.out.sam")
elif args.star_bam:
su.common.force_symlink(args.star_bam, new_prefix + ".Chimeric.out.bam")
# import all jxns
rawdf = su.core.import_starjxns(new_prefix + ".Chimeric.out.junction", args.keep_dups, args.keep_mito)
# get overhang match len
rawdf = su.common.pandas_parallel(rawdf, apply_cigar_overhang, args.threads, "map_async", "")
# get jxns only
jxns = rawdf[rawdf['jxntype'] >= 0].reset_index() # junctions can be either 0, 1, 2
# Prepare Annotation
global gtree # necessary to make global for multiprocessing at the moment
# symlink gtf locally to get around staging issues
su.common.force_symlink(args.gtf, os.path.basename(args.gtf))
gtree = su.gtf_convert.gtf2tree(os.path.basename(args.gtf))
# start output files
breakpoints_fh = open(new_prefix + "_STAR-SEQR_breakpoints.txt", 'w')
breakpoint_cols = ["ann", "span_first", "jxn_left", "jxn_right",
"Fusion_Class", "splice_type", "breakpoint_left", "breakpoint_right",
"left_symbol", "right_symbol", "ann_format", "left_annot", "right_annot",
"dist", "assembly", "assembly_cross_disp", "primers", "name",
"span_homology_score", "jxn_homology_score", "overhang_diversity",
"minfrag20", "minfrag35",
"avg_overhang_BQ", "avg_span_BQ", "avg_jxn_BQ",
"overhang_BQ", "span_BQ", "jxn_BQ",
"overhang_mm", "span_mm", "jxn_mm",
"overhang_meanlen", "span_meanlen", "jxn_meanlen",
"TPM_Fusion", "TPM_Left", "TPM_Right",
"Max_Trx_Fusion", "disposition"]
breakpoint_header = ["NAME", "NREAD_SPANS", "NREAD_JXNLEFT", "NREAD_JXNRIGHT",
"FUSION_CLASS", "SPLICE_TYPE", "BRKPT_LEFT", "BRKPT_RIGHT",
"LEFT_SYMBOL", "RIGHT_SYMBOL", "ANNOT_FORMAT", "LEFT_ANNOT", "RIGHT_ANNOT",
"DISTANCE", "ASSEMBLED_CONTIGS", "ASSEMBLY_CROSS_JXN", "PRIMERS", "ID",
"SPAN_CROSSHOM_SCORE", "JXN_CROSSHOM_SCORE", "OVERHANG_DIVERSITY",
"MINFRAG20", "MINFRAG35",
"OVERHANG_MEANBQ", "SPAN_MEANBQ", "JXN_MEANBQ",
"OVERHANG_BQ15", "SPAN_BQ15", "JXN_BQ15",
"OVERHANG_MM", "SPAN_MM", "JXN_MM",
"OVERHANG_MEANLEN", "SPAN_MEANLEN", "JXN_MEANLEN",
"TPM_FUSION", "TPM_LEFT", "TPM_RIGHT",
"MAX_TRX_FUSION", "DISPOSITION"]
print('\t'.join(map(str, breakpoint_header)), file=breakpoints_fh)
# stats dict
stats_res = OrderedDict([('All_Breakpoints', 0), ('Candidate_Breakpoints', 0), ('Passing_Breakpoints', 0)])
if len(jxns.index) == 0:
logger.info("No junctions found in the input file")
su.core.rna_closeout(new_prefix, stats_res, breakpoints_fh)
sys.exit(0)
# Order, Normalize and Aggregate
logger.info("Ordering junctions")
jxns['order'] = 1
logger.info('Normalizing junctions')
jxns = su.common.pandas_parallel(jxns, apply_normalize_jxns, args.threads, "map_async", "")
logger.info("Getting gene strand and flipping info as necessary")
jxns = su.common.pandas_parallel(jxns, apply_jxn_strand, args.threads, "map_async", "")
jxns = su.common.pandas_parallel(jxns, apply_flip_func, args.threads, "map_async", "")
logger.info("Aggregating junctions")
jxn_summary = su.core.count_jxns(jxns)
# write stats
stats_res['All_Breakpoints'] = len(jxn_summary.index)
logger.info('Raw Breakpoints:' + str(stats_res['All_Breakpoints']))
# Get discordant pairs
logger.info('Getting pair info')
# break the rawdf into chromosome specific files for quicker lookups
dd = {}
for chrom in set(rawdf['chrom1'].unique()) | set(rawdf['chrom2'].unique()):
dd[chrom] = rawdf[(rawdf['chrom1'] == chrom) & (rawdf['jxntype'] == -1)]
jxn_filt = su.common.pandas_parallel(jxn_summary, apply_pairs_func, args.threads, "map_async", "", dd)
# TODO: # Get spans without junctions and do additional processing
# jxn_filt.to_csv(path_or_buf="All_breakpoints.txt", header=True, sep="\t", mode='w', index=False)
# Require at least two reads for processing in order to reduce run time
logger.info('Filtering junctions')
before_remove = len(jxn_filt.index)
jxn_filt = jxn_filt[(((jxn_filt['spans'].astype(int) + jxn_filt['jxn_counts'].astype(int)) >= 2))]
# (jxn_filt['max_overhang'].astype(int) >= 30))] # reads with 1 jxn but sufficient overhang
logger.info('Number of candidates removed due to read support less than 2: ' +
str(before_remove - len(jxn_filt.index)))
if len(jxn_filt.index) >= 1:
# Get Annotation info for each junction
logger.info('Annotating junctions')
jxn_filt = su.common.pandas_parallel(jxn_filt, wrap_annotate_junctions, args.threads, "map_async", "")
# determine if junction follows canonical splicing at exon junction
logger.info('Getting junction info')
jxn_filt = su.common.pandas_parallel(jxn_filt, wrap_jxn_info, args.threads, "map_async", "")
# subset to ROI using bed file if it exists
if args.bed_file:
logger.info('Subsetting junctions using the supplied bed file')
before_remove = len(jxn_filt.index)
targets_tree = su.common.bed_to_tree(args.bed_file)
jxn_filt['subset'] = jxn_filt.apply(lambda x: su.common.subset_bed_func(x['name'], targets_tree, sub_style=args.subset_type), axis=1)
jxn_filt = jxn_filt[jxn_filt['subset'] >= 1]
logger.info("Number of candidates removed due to bed filter: " + str(before_remove - len(jxn_filt.index)))
if len(jxn_filt.index) >= 1:
# remove internal gene dups unless otherwise requested, also removes overlapping genes
if not args.keep_gene_dups:
before_remove = len(jxn_filt.index)
jxn_filt = jxn_filt[jxn_filt['txintersection'].astype(str).str.len() < 3] # [] counts as two
logger.info("Number of candidates removed due to internal gene duplication filter: " + str(before_remove - len(jxn_filt.index)))
if len(jxn_filt.index) >= 1:
# remove novel genes unless otherwise requested
# if not args.keep_novel:
before_remove = len(jxn_filt.index)
# jxn_filt.to_csv(path_or_buf="test_debug.txt", header=True, sep="\t", mode='w', index=False)
jxn_filt = jxn_filt[((jxn_filt['left_symbol'] != "NA") &
(jxn_filt['right_symbol'] != "NA") &
(jxn_filt['left_annot'].str.split(':', expand=True)[3] != "NA") & # No Exon number
(jxn_filt['right_annot'].str.split(':', expand=True)[3] != "NA"))]
logger.info("Number of candidates removed due to novel gene filter: " + str(before_remove - len(jxn_filt.index)))
if len(jxn_filt.index) >= 1:
# remove non-canonical jxns with less than 3 reads here to reduce run time
before_remove = len(jxn_filt.index)
jxn_filt = jxn_filt[~((jxn_filt['splice_type'] == "NON-CANONICAL_SPLICING") &
((jxn_filt["jxn_counts"].astype(int)) < 3))]
logger.info("Number of candidates removed due to NON-CANONICAL splicing with low support: " + str(before_remove - len(jxn_filt.index)))
if len(jxn_filt.index) >= 1:
# combine all supporting reads together.
jxn_filt['supporting_reads'] = jxn_filt['jxn_reads'] + ',' + jxn_filt['spanreads']
stats_res['Candidate_Breakpoints'] = len(jxn_filt.index)
logger.info('Candidate Breakpoints:' + str(stats_res['Candidate_Breakpoints']))
# Process candidates
if len(jxn_filt.index) >= 1:
# Get potential fusion transcripts
logger.info('Writing chimeric transcripts')
chim_trx_dir = "chim_transcripts"
su.common.pandas_parallel(jxn_filt, wrap_exons2seq, args.threads, "map_async", "", args.fasta, chim_trx_dir)
# Get salmon quant for left, right, fusion transcripts
ref_transcripts = "ref_transcripts.fa"
su.gtf_convert.gtf2trxfasta(args.gtf, args.fasta, ref_transcripts, cds=False)
salmon_df = su.salmon_quant.wrap_salmon(chim_trx_dir, args.fastq1, args.fastq2, args.library, args.threads, ref_transcripts)
# merge salmon results
logger.info("Merging salmon results with other metrics")
jxn_filt = pd.merge(jxn_filt, salmon_df, how='left', left_on="name", right_on="Jxn", left_index=False,
right_index=False, sort=True, suffixes=('_x', '_y'), copy=True, indicator=False)
logger.info("Preparing BAM to identify read support")
if args.star_sam:
logger.info("Converting Alignment to ChimericOnly.bam")
chimflag = 256
star_bam_local = new_prefix + ".Chimeric.out.bam"
su.common.sam_2_coord_bam(new_prefix + ".Chimeric.out.sam", star_bam_local, args.threads)
elif args.star_bam:
chimflag = 2048
star_bam_local = new_prefix + ".Chimeric.out.bam"
su.common.sam_2_coord_bam(new_prefix + ".Chimeric.out.sam", star_bam_local, args.threads)
else: # alignment
chimflag = 256
star_bam_local = new_prefix + ".Chimeric.out.bam"
su.common.sam_2_coord_bam(new_prefix + ".Chimeric.out.sam", star_bam_local, args.threads)
su.common.check_file_exists(star_bam_local)
su.common.index_bam(star_bam_local)
# Gather unique read support
logger.info("Getting read support from BAM for each candidate junction:")
su.common.make_new_dir('support')
support_df = su.common.pandas_parallel(jxn_filt, apply_get_rna_support, args.threads, "map_async", "", star_bam_local, chimflag)
finaldf = pd.merge(jxn_filt, support_df, how='inner', left_on="name", right_on="name", left_index=False,
right_index=True, sort=True, suffixes=('_x', '_y'), copy=True, indicator=False)
# collapse read info for brevity but keep here in case useful later on
finaldf['jxn_left'] = finaldf["jxnleft_for_first"] + finaldf["jxnleft_rev_first"]
finaldf['jxn_right'] = finaldf["jxnright_for_first"] + finaldf["jxnright_rev_first"]
finaldf['jxn_first'] = finaldf["jxnleft_for_first"] + finaldf["jxnleft_rev_first"] + \
finaldf["jxnright_for_first"] + finaldf["jxnright_rev_first"]
finaldf['jxn_second'] = finaldf["jxnleft_for_second"] + finaldf["jxnleft_rev_second"] + \
finaldf["jxnright_for_second"] + finaldf["jxnright_rev_second"]
finaldf['span_first'] = finaldf["spanleft_for_first"] + finaldf["spanleft_rev_first"] + \
finaldf["spanright_for_first"] + finaldf["spanright_rev_first"]
finaldf['span_second'] = finaldf["spanleft_for_second"] + finaldf["spanleft_rev_second"] + \
finaldf["spanright_for_second"] + finaldf["spanright_rev_second"]
finaldf['spans_disc'] = finaldf['span_first']
# Get all overlapping transcript seqs into one fasta per side
# writes fasta for each transcript per side(left, right, fusion) in support folder
su.common.pandas_parallel(finaldf, wrap_exons2seq, args.threads, "map_async", "", args.fasta, "support")
# get homology mapping scores
logger.info("Getting read homology mapping scores")
finaldf = su.common.pandas_parallel(finaldf, apply_get_cross_homology, args.threads, "map_async", "", chim_trx_dir)
# get multimapping homologous names to mark
logger.info("Getting fusions homology mapping scores")
homologous_remove = su.homology_graph.prune_homology_graph(finaldf, chim_trx_dir)
# get overhang read diversity
logger.info("Getting overhang read diversity")
finaldf = su.common.pandas_parallel(finaldf, apply_get_diversity, args.threads, "map_async", "")
# get assembly seq and confirm breakpoint
logger.info("doing assembly")
finaldf = su.common.pandas_parallel(finaldf, apply_get_assembly_info, args.threads, "map_async", "", args.as_type)
finaldf['assembly_cross_disp'] = finaldf['assembly_cross_fusions'].apply(lambda x: True if len(str(x)) > 1 else False)
# Generate Primers
# finaldf.to_csv(path_or_buf="test_debug.txt", header=True, sep="\t", mode='w', index=True)
logger.info("Generating primers using indexed fasta")
finaldf = su.common.pandas_parallel(finaldf, apply_primers_func, args.threads, "map_async", "", chim_trx_dir)
# Get normalized breakpoint locations
logger.info("Getting normalized breakpoint locations")
finaldf['breakpoint_left'], finaldf['breakpoint_right'] = zip(*finaldf.apply(lambda x: su.core.get_fusion_locations(x['name']), axis=1))
# get fusion class
logger.info("Getting fusion classes")
finaldf = su.common.pandas_parallel(finaldf, apply_get_fusion_class, args.threads, "map_async", "")
# Extract BaseQualities
finaldf['avg_overhang_BQ'] = su.core.mean_from_cols(finaldf, '^hang.*meanBQ')
finaldf['avg_jxn_BQ'] = su.core.mean_from_cols(finaldf, '^jxn.*meanBQ')
finaldf['avg_span_BQ'] = su.core.mean_from_cols(finaldf, '^span.*meanBQ')
# get bq thresh counts
finaldf['overhang_BQ'] = su.core.minvalcnts_from_cols(finaldf, '^hang.*meanBQ', 15)
finaldf['jxn_BQ'] = su.core.minvalcnts_from_cols(finaldf, '^jxn.*meanBQ', 15)
finaldf['span_BQ'] = su.core.minvalcnts_from_cols(finaldf, '^span.*meanBQ', 15)
# Extract mean mismatches
finaldf['overhang_mm'] = su.core.mean_from_cols(finaldf, '^hang.*mismatches')
finaldf['jxn_mm'] = su.core.mean_from_cols(finaldf, '^jxn.*mismatches')
finaldf['span_mm'] = su.core.mean_from_cols(finaldf, '^span.*mismatches')
# Extract mean read len
finaldf['overhang_meanlen'] = su.core.mean_from_cols(finaldf, '^hang.*seqlen')
finaldf['jxn_meanlen'] = su.core.mean_from_cols(finaldf, '^jxn.*seqlen')
finaldf['span_meanlen'] = su.core.mean_from_cols(finaldf, '^span.*seqlen')
# Get total chimeric counts
finaldf['Chimeric_Counts'] = finaldf['jxn_left'] + finaldf['jxn_right'] + finaldf['spans_disc']
# Get number of breakpoints partners per junction
finaldf['breakpoint_left_rep'] = finaldf['breakpoint_left'].apply(lambda x: finaldf['breakpoint_left'].value_counts()[x])
finaldf['breakpoint_right_rep'] = finaldf['breakpoint_right'].apply(lambda x: finaldf['breakpoint_right'].value_counts()[x])
# HARD FILTERING - Change this once a probabilistic module is ready.
# Hard filter on read counts after accounting for transcript info.
finaldf['filter_minreads'] = (finaldf["jxn_right"] >= 1) | (finaldf["jxn_left"] >= 1)
finaldf['filter_minreads'].replace(to_replace=[False], value='minreads', inplace=True, method=None)
# Hard filter on homology for discordant pairs and jxn.
finaldf['filter_homology'] = ((finaldf['span_homology_score'] <= .50) &
(finaldf['jxn_homology_score'] <= .50))
finaldf['filter_homology'].replace(to_replace=[False], value='homology', inplace=True, method=None)
# Hard filter on multimapping-homologus duplicate fusions
finaldf['homology_collapse'] = (~finaldf['name'].isin(homologous_remove))
finaldf['homology_collapse'].replace(to_replace=[False], value='homology_collapse', inplace=True, method=None)
# Hard filter on unique overhangs. Requre at least 20% of overhangs to be unique if less than 10
finaldf['diversity1'] = (finaldf['jxn_left'] + 1) / (finaldf['overhang_diversity'] + 1)
finaldf['diversity2'] = (finaldf['jxn_left'] + 1) / (finaldf['overhang_diversity'] + 1) ** 2
finaldf['filter_diversity'] = (((finaldf['diversity1'] <= 4) | (finaldf['overhang_diversity'] >= 15)) &
((finaldf['diversity2'] < .75) | (finaldf['overhang_diversity'] >= 15)))
finaldf['filter_diversity'].replace(to_replace=[False], value='diversity', inplace=True, method=None)
# Hard filter on basequalities. Require 20% and at least 1 of reads to have meanbq>10.
finaldf['filter_BQ'] = (((finaldf['overhang_BQ'] >= finaldf['jxn_first'] * .2) & (finaldf['overhang_BQ'] >= 1)) &
((finaldf['jxn_BQ'] >= finaldf['jxn_first'] * .2) & (finaldf['jxn_BQ'] >= 1)) &
(finaldf['span_BQ'] >= finaldf['spans_disc'] * .2))
finaldf['filter_BQ'].replace(to_replace=[False], value='bq10', inplace=True, method=None)
# Hard filter to require non-canonical splicing events to have greater read support and at least 10% with minfrag35
noncan_mask = finaldf[finaldf['splice_type'] == "NON-CANONICAL_SPLICING"]
finaldf['filter_noncanonical'] = ((noncan_mask['jxn_first'] >= 5) &
(noncan_mask['minfrag35'] >= noncan_mask['jxn_first'] * .1))
finaldf['filter_noncanonical'].replace(to_replace=[False], value='noncanonical_support', inplace=True, method=None)
# Hard filter to require at least 10% of reads to pass minfrag20 if span reads == 0
nospan_mask = finaldf[finaldf["span_first"] == 0]
finaldf['filter_nospanminfrag'] = ((nospan_mask['minfrag20'] >= nospan_mask['jxn_first'] * .1) &
(nospan_mask['minfrag20'] >= 1))
finaldf['filter_nospanminfrag'].replace(to_replace=[False], value='nospan_minfrag', inplace=True, method=None)
# Hard filter to require ratio of minfrag20 of jxn reads
finaldf['jxnminfragratio'] = (finaldf['jxn_left'] + 1) / (finaldf['minfrag20'] + 1)
finaldf['filter_minfrag'] = ((finaldf['jxnminfragratio'] < 4) | (finaldf['overhang_diversity'] >= 5))
finaldf['filter_minfrag'].replace(to_replace=[False], value='minfrag', inplace=True, method=None)
# Hard filter to require a > 0 TPM value for the fusion
finaldf['filter_expression'] = (finaldf['TPM_Fusion'] > 0)
finaldf['filter_expression'].replace(to_replace=[False], value='expression', inplace=True, method=None)
# Get the final disposition of filtering
finaldf['filter_all'] = finaldf[['filter_minreads', 'filter_homology',
'filter_diversity', 'filter_noncanonical',
'filter_nospanminfrag', 'filter_minfrag',
'filter_expression', 'homology_collapse',
'filter_BQ']].values.tolist()
finaldf['disposition'] = finaldf['filter_all'].apply(lambda x: ','.join(x for x in list(map(str, x)) if x not in ['True', 'nan']))
finaldf['disposition'].replace('', 'PASS', inplace=True)
# write candidates and info to file
candid_fh = open(new_prefix + "_STAR-SEQR_candidates.txt", 'w')
print('\t'.join(map(str, breakpoint_header)), file=candid_fh)
finaldf.to_csv(path_or_buf=candid_fh, header=False, sep="\t", columns=breakpoint_cols, mode='w', index=False)
candid_fh.close()
# dump all values
# finaldf.to_csv(path_or_buf="data_dump.txt", header=True, sep="\t", mode='w', index=False) # DEBUG
resultsdf = finaldf[finaldf['disposition'] == 'PASS'].sort_values(['jxn_first', "span_first"], ascending=[False, False])
# Write passing fusions to file
resultsdf.to_csv(path_or_buf=breakpoints_fh, header=False, sep="\t",
columns=breakpoint_cols, mode='w', index=False)
# Log Stats
stats_res['Passing_Breakpoints'] = len(resultsdf.index)
logger.info('Passing Breakpoints:' + str(stats_res['Passing_Breakpoints']))
# closeout
su.core.rna_closeout(new_prefix, stats_res, breakpoints_fh)
else: # there were no candidates to process but still want result files produced
# closeout
logger.info('No candidates left to process.')
su.core.rna_closeout(new_prefix, stats_res, breakpoints_fh)
# Finish
logger.info("Program took %g seconds" % (time.time() - start))
if __name__ == "__main__":
sys.exit(main())