-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_off_policy.py
196 lines (168 loc) · 7.92 KB
/
train_off_policy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import jax.numpy as jnp
import numpy as np
import optax
import networkx as nx
import jax
import os
import math
from tqdm import trange
from numpy.random import default_rng
from dag_gflownet.env import GFlowNetDAGEnv
from dag_gflownet.gflownet import DAGGFlowNet, GFNParameters
from dag_gflownet.utils.factories import get_scorer, get_replay_cls
from dag_gflownet.utils.gflownet import posterior_estimate
from dag_gflownet.utils.metrics import get_log_features
from dag_gflownet.utils.jraph_utils import to_graphs_tuple
from dag_gflownet.utils.exhaustive import (get_full_posterior,
get_edge_log_features, get_path_log_features, get_markov_blanket_log_features)
def main(args):
rng = default_rng(args.seed)
key = jax.random.PRNGKey(args.seed)
key, subkey = jax.random.split(key)
# Create the environment
scorer, data, graph = get_scorer(args, rng=rng)
env = GFlowNetDAGEnv(
num_envs=args.num_envs,
scorer=scorer,
num_workers=args.num_workers,
context=args.mp_context
)
# Create the replay buffer
replay_cls = get_replay_cls(args.loss)
replay = replay_cls(
args.replay_capacity,
num_variables=env.num_variables,
)
# Create the GFlowNet & initialize parameters
gflownet = DAGGFlowNet(loss=args.loss, delta=args.delta, stop_gamma=args.stop_gamma)
optimizer = optax.multi_transform({
'log_Z': optax.sgd(args.lr_logZ, momentum=args.momentum_logZ),
'model': optax.adam(args.lr),
}, GFNParameters(model='model', log_Z='log_Z'))
params, state = gflownet.init(
subkey,
optimizer,
replay.dummy['graphs'],
replay.dummy['masks'],
)
exploration_schedule = jax.jit(optax.linear_schedule(
init_value=jnp.array(0.),
end_value=jnp.array(1. - args.min_exploration),
transition_steps=args.num_iterations // 2,
transition_begin=args.prefill,
))
# For small enough graphs, evaluate the full posterior
if env.num_variables < 6:
full_posterior = get_full_posterior(data, scorer, verbose=True)
full_edge_log_features = get_edge_log_features(full_posterior)
full_path_log_features = get_path_log_features(full_posterior)
full_markov_log_features = get_markov_blanket_log_features(full_posterior)
# Training loop
indices = None
observations = env.reset()
with trange(args.prefill + args.num_iterations, desc='Training') as pbar:
for iteration in pbar:
# Sample actions, execute them, and save transitions in the replay buffer
epsilon = exploration_schedule(iteration)
observations['graph'] = to_graphs_tuple(observations['adjacency'])
actions, key, logs = gflownet.act(params, key, observations, epsilon)
next_observations, delta_scores, dones, _ = env.step(np.asarray(actions))
indices = replay.add(
observations,
actions,
logs,
next_observations,
delta_scores,
dones,
indices=indices
)
observations = next_observations
if iteration >= args.prefill:
# Update the parameters of the GFlowNet
if replay.can_sample(args.batch_size):
samples = replay.sample(batch_size=args.batch_size, rng=rng)
params, state, logs = gflownet.step(params, state, samples)
pbar.set_postfix(loss=f"{logs['loss']:.2f}", epsilon=f"{epsilon:.2f}", log_Z=f"{params.log_Z:.3f}")
# Evaluate the posterior estimate
posterior, _ = posterior_estimate(
gflownet,
params,
env,
key,
num_samples=args.num_samples_posterior,
desc='Sampling from posterior'
)
# Compute the metrics
ground_truth = nx.to_numpy_array(graph, weight=None)
if env.num_variables < 6:
log_features = get_log_features(posterior, data.columns)
if __name__ == '__main__':
from argparse import ArgumentParser
import json
parser = ArgumentParser(description='DAG-GFlowNet for Strucure Learning (Off-Policy training).')
# Environment
environment = parser.add_argument_group('Environment')
environment.add_argument('--num_envs', type=int, default=8,
help='Number of parallel environments (default: %(default)s)')
environment.add_argument('--scorer_kwargs', type=json.loads, default='{}',
help='Arguments of the scorer.')
environment.add_argument('--prior', type=str, default='uniform',
choices=['uniform', 'erdos_renyi', 'edge', 'fair'],
help='Prior over graphs (default: %(default)s)')
environment.add_argument('--prior_kwargs', type=json.loads, default='{}',
help='Arguments of the prior over graphs.')
# Optimization
optimization = parser.add_argument_group('Optimization')
optimization.add_argument('--lr', type=float, default=1e-5,
help='Learning rate (default: %(default)s)')
optimization.add_argument('--lr_logZ', type=float, default=1e-1,
help='Learning rate for log(Z) (default: %(default)s)')
optimization.add_argument('--momentum_logZ', type=float, default=0.8,
help='Momentum for log(Z) (default: %(default)s)')
optimization.add_argument('--delta', type=float, default=1.,
help='Value of delta for Huber loss (default: %(default)s)')
optimization.add_argument('--batch_size', type=int, default=32,
help='Batch size (default: %(default)s)')
optimization.add_argument('--num_iterations', type=int, default=100_000,
help='Number of iterations (default: %(default)s)')
optimization.add_argument('--loss', type=str, default='db',
choices=['db', 'tb_off_policy', 'hvi_off_policy'],
help='Type of loss (default: %(default)s)')
# Replay buffer
replay = parser.add_argument_group('Replay Buffer')
replay.add_argument('--replay_capacity', type=int, default=100_000,
help='Capacity of the replay buffer (default: %(default)s)')
replay.add_argument('--prefill', type=int, default=1000,
help='Number of iterations with a random policy to prefill '
'the replay buffer (default: %(default)s)')
# Exploration
exploration = parser.add_argument_group('Exploration')
exploration.add_argument('--min_exploration', type=float, default=0.1,
help='Minimum value of epsilon-exploration (default: %(default)s)')
exploration.add_argument('--stop_gamma', type=float, default=0.,
help='How often termination is trigger during exploration (default: %(default)s)')
# Miscellaneous
misc = parser.add_argument_group('Miscellaneous')
misc.add_argument('--num_samples_posterior', type=int, default=1000,
help='Number of samples for the posterior estimate (default: %(default)s)')
misc.add_argument('--seed', type=int, default=0,
help='Random seed (default: %(default)s)')
misc.add_argument('--num_workers', type=int, default=4,
help='Number of workers (default: %(default)s)')
misc.add_argument('--mp_context', type=str, default='spawn',
help='Multiprocessing context (default: %(default)s)')
misc.add_argument('--log_every', type=int, default=50,
help='Frequency for logging (default: %(default)s)')
misc.add_argument('--log_posterior_every', type=int, default=1000,
help='Frequency of evaluation of the posterior estimate (default: %(default)s)')
subparsers = parser.add_subparsers(help='Type of graph', dest='graph')
# Erdos-Renyi Linear-Gaussian graphs
er_lingauss = subparsers.add_parser('erdos_renyi_lingauss')
er_lingauss.add_argument('--num_variables', type=int, required=True,
help='Number of variables')
er_lingauss.add_argument('--num_edges', type=int, required=True,
help='Average number of edges')
er_lingauss.add_argument('--num_samples', type=int, required=True,
help='Number of samples')
args = parser.parse_args()
main(args)