Skip to content

Latest commit

 

History

History
166 lines (147 loc) · 6.07 KB

README.md

File metadata and controls

166 lines (147 loc) · 6.07 KB

MoCoP: Molecule-Morphology Contrastive Pretraining for Transferable Molecular Representation

Cuong Q. Nguyen, Dante Pertusi, Kim M. Branson

[GSK AI] [Paper] [Blog] [BibTeX] img


Instructions

Cloning and setting up your environment

git clone https://github.com/GSK-AI/mocop.git
cd mocop
conda env create --name mocop --file environment.yaml
source activate mocop
source .env

Setting OE_LICENSE

This step requires the OpenEye license file and is necessary for running src/featurize.py. Change <path> to the appropriate directory.

export OE_LICENSE=<path>/oe_license.txt

Quickstart

Finetuning pretrained MoCoP on custom datasets with random splits

Prepare data using the following schema and save as CSV.

smiles task_1 task_2 ... task_N
0 <smiles_1> y1,1 y1,2 ... y1,N
1 <smiles_2> y2,1 y2,2 ... y2,N
... ... ... ... ... ...

As an example, a dataset with 3 tasks would look something like below.

,smiles,task_1,task2,task_3
0,smiles_1,y_11,y_12,y_13
1,smiles_2,y_21,y_22,y_23
...

Run finetuning from a single MoCoP checkpoint stored in models/ with random splits. Checkpoints and training artifacts are stored at models/finetune

DATA_PATH=<Path to generated CSV file>

CKPT_PATH=models/jump_mocop_seed_0_split_0/version_0/checkpoints/best-ckpt-remapped.ckpt

python bin/train.py -cn finetune.yml \
                        model._args_.0=$CKPT_PATH \
                        dataloaders.dataset.data_path=$DATA_PATH \
                        dataloaders.splits=null \
                        trainer.logger.save_dir=models \
                        trainer.logger.name=finetune

Finetuning using pre-specified splits

Prepare your train, validation, and test split CSV files using the following schema. In short, each split file contains a single column index that corresponds to the row index of your data table and specifies the set of rows in that split.

index
0 2
1 10
2 32
... ...
in CSV format, a split file would look like
,index
0,2
1,10
2,32
...,...

We can now finetune our models by replacing dataloaders.splits=null with specific split files in the config at runtime.

DATA_PATH=<Path to generated CSV file>
TRAIN_SPLIT_PATH=<PATH to train split CSV file>
VAL_SPLIT_PATH=<PATH to validation split CSV file>
TEST_SPLIT_PATH=<PATH to test split CSV file>

CKPT_PATH=models/jump_mocop_seed_0_split_0/version_0/checkpoints/best-ckpt-remapped.ckpt

python bin/train.py -cn finetune.yml \
                        model._args_.0=$CKPT_PATH \
                        dataloaders.dataset.data_path=$DATA_PATH \
                        dataloaders.splits.train=$TRAIN_SPLIT_PATH \
                        dataloaders.splits.val=$VAL_SPLIT_PATH \
                        dataloaders.splits.test=$TEST_SPLIT_PATH \
                        trainer.logger.save_dir=models \
                        trainer.logger.name=finetune

Finetuning using all MoCoP checkpoints

All MoCoP checkpoints are stored in models/ and can be accessedby looping over them.

DATA_PATH=<Path to generated CSV file>

CKPTS=(
    models/jump_mocop_seed_0_split_0/version_0/checkpoints/best-ckpt-remapped.ckpt
    models/jump_mocop_seed_1_split_1/version_0/checkpoints/best-ckpt-remapped.ckpt
    models/jump_mocop_seed_2_split_2/version_0/checkpoints/best-ckpt-remapped.ckpt
)

for CKPT_PATH in ${CKPTS[@]}; do
    python bin/train.py -cn finetune.yml \
                            model._args_.0=$CKPT_PATH \
                            dataloaders.dataset.data_path=$DATA_PATH \
                            dataloaders.splits=null \
                            trainer.logger.save_dir=models \
                            trainer.logger.name=finetune
done

Reproducing experiments

Set the necessary environment variables

Variable Description
$CONDA_ENV Name of conda environment
$DATA_DIR Directory with processed JUMP-CP data
$SAVE_DIR Output directory for model training

Download and preprocess ChEMBL20 and JUMP-CP compound data

source data/download_and_preprocess.sh $DATA_DIR $CONDA_ENV

Pretraining on JUMP-CP

# MoCoP
source exp/train_jump_mocop.sh $SAVE_DIR $DATA_DIR $CONDA_ENV
# Multitask
source exp/train_jump_multitask.sh $SAVE_DIR $DATA_DIR $CONDA_ENV

Remapping model state_dict for finetuning

source exp/remap_state_dict_mocop.sh $SAVE_DIR
source exp/remap_state_dict_multitask.sh $SAVE_DIR

Finetuning on ChEMBL20

# Training from scratch
source exp/train_chembl20_fromscratch.sh $SAVE_DIR $CONDA_ENV
# MoCoP finetune
source exp/train_chembl20_mocop.sh $SAVE_DIR $CONDA_ENV
# MoCoP linear probe
source exp/train_chembl20_mocop_linear.sh $SAVE_DIR $CONDA_ENV
# Multitask finetune
source exp/train_chembl20_multitask.sh $SAVE_DIR $CONDA_ENV

Finetuning on ChEMBL20 using MoCoP checkpoints in models/

# MoCoP finetune
source exp/train_chembl20_mocop.sh models $CONDA_ENV
# MoCoP linear probe
source exp/train_chembl20_mocop_linear.sh models $CONDA_ENV

License

MoCoP code is released under the GPLv3 license and MoCoP weights are released under the CC-BY-NC-ND 4.0 license.

Citing MoCoP

@misc{nguyen2023mocop,
	title={Molecule-Morphology Contrastive Pretraining for Transferable Molecular Representation},
	author={Nguyen, Cuong Q. and Pertusi, Dante and Branson, Kim M.},
	journal={arXiv:2305.09790},
	year={2023},
}