-
Notifications
You must be signed in to change notification settings - Fork 0
/
objectdetector_true.py
88 lines (73 loc) · 2.47 KB
/
objectdetector_true.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import cv2
import numpy as np
import pyttsx3
import textgen
#textpart
img_size=None
engine=pyttsx3.init()
# cvpart
print("Loading YOLO ...")
net=cv2.dnn.readNet("yolov3.cfg","yolov3.weights")
#net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)
classes=[]
with open("coco.names", "r") as f:
classes=[line.strip() for line in f.readlines()]
layer_names=net.getLayerNames()
output_layers=[layer_names[i-1] for i in net.getUnconnectedOutLayers()]
print("YOLO loaded")
# object detection
def detect_objects(img_path, img_show=False, img_highlight=False):
print("Detecting objects ...")
objs=[]
cv2.destroyAllWindows()
img=cv2.imread(img_path)
#img=cv2.resize(img,(500,500))
height, width, channels = img.shape
img_size=(width,height) #for text
blob=cv2.dnn.blobFromImage(img, 1/255.0, (416, 416), swapRB=True, crop=False)
net.setInput(blob)
outs=net.forward(output_layers)
class_ids=[]
confidences=[]
boxes=[]
for out in outs:
for detection in out:
scores=detection[5:]
class_id=np.argmax(scores)
confidence=scores[class_id]
if confidence > 0.5:
center_x=int(detection[0]*width)
center_y=int(detection[1]*height)
w=int(detection[2]*width)
h=int(detection[3]*height)
x=int(center_x - w /2)
y=int(center_y - h /2)
boxes.append([x,y,w,h])
confidences.append(float(confidence))
class_ids.append(class_id)
indexes=cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
colors=np.random.uniform(0,255,size=(len(classes),3))
for i in range(len(boxes)):
if i in indexes:
x,y,w,h=boxes[i]
label=str(classes[class_ids[i]])
objs.append(dict(cls=label, x=x, y=y, w=w, h=h))
# rectagle highlighting
if img_highlight :
color=colors[class_ids[i]]
cv2.rectangle(img,(x,y),(x+w, y+h), color,2)
cv2.putText(img, label, (x,y-5), cv2.FONT_HERSHEY_SIMPLEX, 1/2, color, 2)
print("Object detection complete")
if img_show :
cv2.imshow("Image", img)
cv2.waitKey(1000)
return objs
while True :
img_path=input("image :")
if img_path=='' :
break
objs=detect_objects(img_path)
gentext=textgen.getText(objs)
print("Generated Text :\n"+gentext+'\n')
engine.say(gentext)
engine.runAndWait()