-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathLesson 94 - tqdm.py
58 lines (43 loc) · 1.05 KB
/
Lesson 94 - tqdm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from tqdm.gui import trange
from tqdm import tqdm, trange
import random
import time
import pandas as pd
import numpy as np
help(tqdm.__init__)
total = 0
data = [random.random() for _ in range(1000)]
for x in tqdm(data):
total += x ** 2
time.sleep(1e-3)
print(total)
total = 0
for x in trange(1000, desc="Summing squares", colour="red"):
total += random.random() ** 2
time.sleep(1e-3)
print(total)
total = 0
t = tqdm(total=1000, desc="Summing squares", colour="red")
for x in range(100):
for y in range(10):
total += random.random() ** 2
time.sleep(1e-3)
t.update(10)
t.close()
print(total)
total = 0
t = tqdm(total=100, desc="Summing squares", colour="red")
for x in range(10):
for y in range(100):
total += random.random() ** 2
time.sleep(1e-3)
t.update()
t.reset()
t.close()
print(total)
df = pd.DataFrame(np.random.randint(0, 1000, (10000000, 6)))
tqdm.pandas()
df.groupby(0).progress_apply(lambda x: x ** 2)
from tqdm.gui import trange
for i in trange(1000):
time.sleep(1e-3)