-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist_model.py
81 lines (60 loc) · 2.62 KB
/
mnist_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from tensorflow import keras
import matplotlib.pyplot as plt
# Returns a compiled and trained model with the given hyper parameters
def get_compiled_model(optimizer='adam', loss='mse', metrics=['accuracy']):
# Create model
model = keras.models.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dense(10, activation='softmax')
])
# Compile model
model.compile(
optimizer=optimizer,
loss=loss,
metrics=metrics
)
# Return *compiled* model
return model
def get_trained_mnist_model(epochs=10, batch_size=32, optimizer='adam', loss='mse', metrics=['accuracy'], y_one_hot_encode=True):
# Load MNIST data
(X_train, y_train), (X_test, y_test) = keras.datasets.mnist.load_data()
# Normalize data
X_train = X_train / 255.0
X_test = X_test / 255.0
if y_one_hot_encode:
# One hot encode y data
y_train = keras.utils.to_categorical(y_train)
y_test = keras.utils.to_categorical(y_test)
model = get_compiled_model(
optimizer=optimizer, loss=loss, metrics=metrics)
# Train model
model.fit(X_train, y_train, epochs=epochs,
validation_data=(X_test, y_test), verbose=False, batch_size=batch_size)
# Return *trained* model
return model
# Plots a graph where the x axis is the number of epochs and the y axis is the accuracy
def plot_accuracy_by_total_epochs(trained_models):
# Sort the models by the number of epochs they were trained for
trained_models.sort(key=lambda x: len(x.history.history["loss"]))
plt.plot([len(model.history.history["accuracy"]) for model in trained_models], [model.history.history['accuracy'][-1]
for model in trained_models])
plt.xlabel('Total number of epochs')
plt.ylabel('Accuracy of model')
plt.show()
def plot_accuracy_by_batch_size(trained_models, batch_sizes):
for model, batch_size in zip(trained_models, batch_sizes):
plt.plot(range(1, len(model.history.history['loss'])+1),
model.history.history['accuracy'], label=f"Batch size: {batch_size}")
plt.legend(loc="lower right")
plt.xlabel('Epoch')
plt.ylabel('Accuracy of model')
plt.show()
def plot_loss_by_learning_rate(trained_models, learning_rates):
for model, learning_rate in zip(trained_models, learning_rates):
plt.plot(range(1, len(model.history.history['loss'])+1),
model.history.history['loss'], label=f"Learning Rate: {learning_rate}")
plt.legend(loc="upper left")
plt.xlabel('Epoch')
plt.ylabel('Loss of model')
plt.show()