Skip to content

Latest commit

 

History

History
72 lines (63 loc) · 3.12 KB

README.md

File metadata and controls

72 lines (63 loc) · 3.12 KB

Immo Prediction App with 🦀 Charlie 🦀

Python Docker Streamlit FastAPI Pydantic Linux

🏢 Description

In the preciding project I build a model with Charlie 🦀 to predict the price of a house, in this project we will deploy the model with FastAPI and Streamlit. FastAPI for other developers to use the model and Streamlit for the end-user.

📦 Repo structure

.
├── backend  # FastAPI
│   ├── config.py
│   ├── Dockerfile
│   ├── features
│   │   ├── build_features.py
│   │   ├── pipeline.py
│   │   └── transformers.py
│   ├── main.py
│   ├── models
│   │   └── catboost.pkl
│   ├── requirements.txt
│   ├── schemas
│   │   ├── address_schema.py
│   │   ├── property_schema.py
│   │   └── value_shema.py
│   └── utils.py
├── docker-compose.yml
├── frontend # streamlit
│   ├── app.py
│   ├── config.py
│   ├── Dockerfile
│   ├── images
│   ├── requirements.txt
│   └── utils.py
├── README.md
└── requirements.txt

Online Live Demo!

It is a bit slow because it is hosted on a free server, but it works! Please be patient.

🚀 Launch the app locally

sudo docker compose up -d --build

Screenshot

FastAPI

FastAPI

View live demo: Immo Prediction Backend with FastAPI

StreamLit

StreamLit

View live demo: Immo Prediction Frontend with Streamlit

⏱️ Timeline

This project was done in 5 days including studying the theory and implementing the code.

📌 Personal Situation

This project was done as part of my AI trainee program at BeCode.

Connect with me!

LinkedIn Stack Overflow Ask Ubuntu