-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathACMH.cpp
639 lines (528 loc) · 21.8 KB
/
ACMH.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
#include "ACMH.h"
#include <cstdarg>
void StringAppendV(std::string* dst, const char* format, va_list ap) {
// First try with a small fixed size buffer.
static const int kFixedBufferSize = 1024;
char fixed_buffer[kFixedBufferSize];
// It is possible for methods that use a va_list to invalidate
// the data in it upon use. The fix is to make a copy
// of the structure before using it and use that copy instead.
va_list backup_ap;
va_copy(backup_ap, ap);
int result = vsnprintf(fixed_buffer, kFixedBufferSize, format, backup_ap);
va_end(backup_ap);
if (result < kFixedBufferSize) {
if (result >= 0) {
// Normal case - everything fits.
dst->append(fixed_buffer, result);
return;
}
#ifdef _MSC_VER
// Error or MSVC running out of space. MSVC 8.0 and higher
// can be asked about space needed with the special idiom below:
va_copy(backup_ap, ap);
result = vsnprintf(nullptr, 0, format, backup_ap);
va_end(backup_ap);
#endif
if (result < 0) {
// Just an error.
return;
}
}
// Increase the buffer size to the size requested by vsnprintf,
// plus one for the closing \0.
const int variable_buffer_size = result + 1;
std::unique_ptr<char> variable_buffer(new char[variable_buffer_size]);
// Restore the va_list before we use it again.
va_copy(backup_ap, ap);
result =
vsnprintf(variable_buffer.get(), variable_buffer_size, format, backup_ap);
va_end(backup_ap);
if (result >= 0 && result < variable_buffer_size) {
dst->append(variable_buffer.get(), result);
}
}
std::string StringPrintf(const char* format, ...) {
va_list ap;
va_start(ap, format);
std::string result;
StringAppendV(&result, format, ap);
va_end(ap);
return result;
}
void CudaSafeCall(const cudaError_t error, const std::string& file,
const int line) {
if (error != cudaSuccess) {
std::cerr << StringPrintf("%s in %s at line %i", cudaGetErrorString(error),
file.c_str(), line)
<< std::endl;
exit(EXIT_FAILURE);
}
}
void CudaCheckError(const char* file, const int line) {
cudaError error = cudaGetLastError();
if (error != cudaSuccess) {
std::cerr << StringPrintf("cudaCheckError() failed at %s:%i : %s", file,
line, cudaGetErrorString(error))
<< std::endl;
exit(EXIT_FAILURE);
}
// More careful checking. However, this will affect performance.
// Comment away if needed.
error = cudaDeviceSynchronize();
if (cudaSuccess != error) {
std::cerr << StringPrintf("cudaCheckError() with sync failed at %s:%i : %s",
file, line, cudaGetErrorString(error))
<< std::endl;
std::cerr
<< "This error is likely caused by the graphics card timeout "
"detection mechanism of your operating system. Please refer to "
"the FAQ in the documentation on how to solve this problem."
<< std::endl;
exit(EXIT_FAILURE);
}
}
ACMH::ACMH() {}
ACMH::~ACMH()
{
delete[] plane_hypotheses_host;
delete[] costs_host;
for (int i = 0; i < num_images; ++i) {
cudaDestroyTextureObject(texture_objects_host.images[i]);
cudaFreeArray(cuArray[i]);
}
cudaFree(texture_objects_cuda);
cudaFree(cameras_cuda);
cudaFree(plane_hypotheses_cuda);
cudaFree(costs_cuda);
cudaFree(rand_states_cuda);
cudaFree(selected_views_cuda);
cudaFree(depths_cuda); // Updated by Qingshan 2020-01-15
if (params.geom_consistency) {
for (int i = 0; i < num_images; ++i) {
cudaDestroyTextureObject(texture_depths_host.images[i]);
cudaFreeArray(cuDepthArray[i]);
}
cudaFree(texture_depths_cuda);
}
}
Camera ReadCamera(const std::string &cam_path)
{
Camera camera;
std::ifstream file(cam_path);
std::string line;
file >> line;
for (int i = 0; i < 3; ++i) {
file >> camera.R[3 * i + 0] >> camera.R[3 * i + 1] >> camera.R[3 * i + 2] >> camera.t[i];
}
float tmp[4];
file >> tmp[0] >> tmp[1] >> tmp[2] >> tmp[3];
file >> line;
for (int i = 0; i < 3; ++i) {
file >> camera.K[3 * i + 0] >> camera.K[3 * i + 1] >> camera.K[3 * i + 2];
}
float depth_num;
float interval;
file >> camera.depth_min >> interval >> depth_num >> camera.depth_max;
return camera;
}
void RescaleImageAndCamera(cv::Mat_<cv::Vec3b> &src, cv::Mat_<cv::Vec3b> &dst, cv::Mat_<float> &depth, Camera &camera)
{
const int cols = depth.cols;
const int rows = depth.rows;
if (cols == src.cols && rows == src.rows) {
dst = src.clone();
return;
}
const float scale_x = cols / static_cast<float>(src.cols);
const float scale_y = rows / static_cast<float>(src.rows);
cv::resize(src, dst, cv::Size(cols,rows), 0, 0, cv::INTER_LINEAR);
camera.K[0] *= scale_x;
camera.K[2] *= scale_x;
camera.K[4] *= scale_y;
camera.K[5] *= scale_y;
camera.width = cols;
camera.height = rows;
}
float3 Get3DPointonWorld(const int x, const int y, const float depth, const Camera camera)
{
float3 pointX;
float3 tmpX;
// Reprojection
pointX.x = depth * (x - camera.K[2]) / camera.K[0];
pointX.y = depth * (y - camera.K[5]) / camera.K[4];
pointX.z = depth;
// Rotation
tmpX.x = camera.R[0] * pointX.x + camera.R[3] * pointX.y + camera.R[6] * pointX.z;
tmpX.y = camera.R[1] * pointX.x + camera.R[4] * pointX.y + camera.R[7] * pointX.z;
tmpX.z = camera.R[2] * pointX.x + camera.R[5] * pointX.y + camera.R[8] * pointX.z;
// Transformation
float3 C;
C.x = -(camera.R[0] * camera.t[0] + camera.R[3] * camera.t[1] + camera.R[6] * camera.t[2]);
C.y = -(camera.R[1] * camera.t[0] + camera.R[4] * camera.t[1] + camera.R[7] * camera.t[2]);
C.z = -(camera.R[2] * camera.t[0] + camera.R[5] * camera.t[1] + camera.R[8] * camera.t[2]);
pointX.x = tmpX.x + C.x;
pointX.y = tmpX.y + C.y;
pointX.z = tmpX.z + C.z;
return pointX;
}
void ProjectonCamera(const float3 PointX, const Camera camera, float2 &point, float &depth)
{
float3 tmp;
tmp.x = camera.R[0] * PointX.x + camera.R[1] * PointX.y + camera.R[2] * PointX.z + camera.t[0];
tmp.y = camera.R[3] * PointX.x + camera.R[4] * PointX.y + camera.R[5] * PointX.z + camera.t[1];
tmp.z = camera.R[6] * PointX.x + camera.R[7] * PointX.y + camera.R[8] * PointX.z + camera.t[2];
depth = camera.K[6] * tmp.x + camera.K[7] * tmp.y + camera.K[8] * tmp.z;
point.x = (camera.K[0] * tmp.x + camera.K[1] * tmp.y + camera.K[2] * tmp.z) / depth;
point.y = (camera.K[3] * tmp.x + camera.K[4] * tmp.y + camera.K[5] * tmp.z) / depth;
}
float GetAngle( const cv::Vec3f &v1, const cv::Vec3f &v2 )
{
float dot_product = v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2];
float angle = acosf(dot_product);
//if angle is not a number the dot product was 1 and thus the two vectors should be identical --> return 0
if ( angle != angle )
return 0.0f;
return angle;
}
int readDepthDmb(const std::string file_path, cv::Mat_<float> &depth)
{
FILE *inimage;
inimage = fopen(file_path.c_str(), "rb");
if (!inimage){
std::cout << "Error opening file " << file_path << std::endl;
return -1;
}
int32_t type, h, w, nb;
type = -1;
fread(&type,sizeof(int32_t),1,inimage);
fread(&h,sizeof(int32_t),1,inimage);
fread(&w,sizeof(int32_t),1,inimage);
fread(&nb,sizeof(int32_t),1,inimage);
if (type != 1) {
fclose(inimage);
return -1;
}
int32_t dataSize = h*w*nb;
depth = cv::Mat::zeros(h,w,CV_32F);
fread(depth.data,sizeof(float),dataSize,inimage);
fclose(inimage);
return 0;
}
int writeDepthDmb(const std::string file_path, const cv::Mat_<float> depth)
{
FILE *outimage;
outimage = fopen(file_path.c_str(), "wb");
if (!outimage) {
std::cout << "Error opening file " << file_path << std::endl;
}
int32_t type = 1;
int32_t h = depth.rows;
int32_t w = depth.cols;
int32_t nb = 1;
fwrite(&type,sizeof(int32_t),1,outimage);
fwrite(&h,sizeof(int32_t),1,outimage);
fwrite(&w,sizeof(int32_t),1,outimage);
fwrite(&nb,sizeof(int32_t),1,outimage);
float* data = (float*)depth.data;
int32_t datasize = w*h*nb;
fwrite(data,sizeof(float),datasize,outimage);
fclose(outimage);
return 0;
}
int readNormalDmb (const std::string file_path, cv::Mat_<cv::Vec3f> &normal)
{
FILE *inimage;
inimage = fopen(file_path.c_str(), "rb");
if (!inimage){
std::cout << "Error opening file " << file_path << std::endl;
return -1;
}
int32_t type, h, w, nb;
type = -1;
fread(&type,sizeof(int32_t),1,inimage);
fread(&h,sizeof(int32_t),1,inimage);
fread(&w,sizeof(int32_t),1,inimage);
fread(&nb,sizeof(int32_t),1,inimage);
if (type != 1) {
fclose(inimage);
return -1;
}
int32_t dataSize = h*w*nb;
normal = cv::Mat::zeros(h,w,CV_32FC3);
fread(normal.data,sizeof(float),dataSize,inimage);
fclose(inimage);
return 0;
}
int writeNormalDmb(const std::string file_path, const cv::Mat_<cv::Vec3f> normal)
{
FILE *outimage;
outimage = fopen(file_path.c_str(), "wb");
if (!outimage) {
std::cout << "Error opening file " << file_path << std::endl;
}
int32_t type = 1;
int32_t h = normal.rows;
int32_t w = normal.cols;
int32_t nb = 3;
fwrite(&type,sizeof(int32_t),1,outimage);
fwrite(&h,sizeof(int32_t),1,outimage);
fwrite(&w,sizeof(int32_t),1,outimage);
fwrite(&nb,sizeof(int32_t),1,outimage);
float* data = (float*)normal.data;
int32_t datasize = w*h*nb;
fwrite(data,sizeof(float),datasize,outimage);
fclose(outimage);
return 0;
}
void StoreColorPlyFileBinaryPointCloud (const std::string &plyFilePath, const std::vector<PointList> &pc)
{
std::cout << "store 3D points to ply file" << std::endl;
FILE *outputPly;
outputPly=fopen(plyFilePath.c_str(), "wb");
/*write header*/
fprintf(outputPly, "ply\n");
fprintf(outputPly, "format binary_little_endian 1.0\n");
fprintf(outputPly, "element vertex %d\n",pc.size());
fprintf(outputPly, "property float x\n");
fprintf(outputPly, "property float y\n");
fprintf(outputPly, "property float z\n");
fprintf(outputPly, "property float nx\n");
fprintf(outputPly, "property float ny\n");
fprintf(outputPly, "property float nz\n");
fprintf(outputPly, "property uchar red\n");
fprintf(outputPly, "property uchar green\n");
fprintf(outputPly, "property uchar blue\n");
fprintf(outputPly, "end_header\n");
//write data
#pragma omp parallel for
for(size_t i = 0; i < pc.size(); i++) {
const PointList &p = pc[i];
float3 X = p.coord;
const float3 normal = p.normal;
const float3 color = p.color;
const char b_color = (int)color.x;
const char g_color = (int)color.y;
const char r_color = (int)color.z;
if(!(X.x < FLT_MAX && X.x > -FLT_MAX) || !(X.y < FLT_MAX && X.y > -FLT_MAX) || !(X.z < FLT_MAX && X.z >= -FLT_MAX)){
X.x = 0.0f;
X.y = 0.0f;
X.z = 0.0f;
}
#pragma omp critical
{
fwrite(&X.x, sizeof(X.x), 1, outputPly);
fwrite(&X.y, sizeof(X.y), 1, outputPly);
fwrite(&X.z, sizeof(X.z), 1, outputPly);
fwrite(&normal.x, sizeof(normal.x), 1, outputPly);
fwrite(&normal.y, sizeof(normal.y), 1, outputPly);
fwrite(&normal.z, sizeof(normal.z), 1, outputPly);
fwrite(&r_color, sizeof(char), 1, outputPly);
fwrite(&g_color, sizeof(char), 1, outputPly);
fwrite(&b_color, sizeof(char), 1, outputPly);
}
}
fclose(outputPly);
}
static float GetDisparity(const Camera &camera, const int2 &p, const float &depth)
{
float point3D[3];
point3D[0] = depth * (p.x - camera.K[2]) / camera.K[0];
point3D[1] = depth * (p.y - camera.K[5]) / camera.K[4];
point3D[2] = depth;
return std::sqrt(point3D[0] * point3D[0] + point3D[1] * point3D[1] + point3D[2] * point3D[2]);
}
void ACMH::SetGeomConsistencyParams()
{
params.geom_consistency = true;
params.max_iterations = 2;
}
void ACMH::InuputInitialization(const std::string &dense_folder, const Problem &problem)
{
images.clear();
cameras.clear();
std::string image_folder = dense_folder + std::string("/images");
std::string cam_folder = dense_folder + std::string("/cams");
std::stringstream image_path;
image_path << image_folder << "/" << std::setw(8) << std::setfill('0') << problem.ref_image_id << ".jpg";
cv::Mat_<uint8_t> image_uint = cv::imread(image_path.str(), cv::IMREAD_GRAYSCALE);
cv::Mat image_float;
image_uint.convertTo(image_float, CV_32FC1);
images.push_back(image_float);
std::stringstream cam_path;
cam_path << cam_folder << "/" << std::setw(8) << std::setfill('0') << problem.ref_image_id << "_cam.txt";
Camera camera = ReadCamera(cam_path.str());
camera.height = image_float.rows;
camera.width = image_float.cols;
cameras.push_back(camera);
size_t num_src_images = problem.src_image_ids.size();
for (size_t i = 0; i < num_src_images; ++i) {
std::stringstream image_path;
image_path << image_folder << "/" << std::setw(8) << std::setfill('0') << problem.src_image_ids[i] << ".jpg";
cv::Mat_<uint8_t> image_uint = cv::imread(image_path.str(), cv::IMREAD_GRAYSCALE);
cv::Mat image_float;
image_uint.convertTo(image_float, CV_32FC1);
images.push_back(image_float);
std::stringstream cam_path;
cam_path << cam_folder << "/" << std::setw(8) << std::setfill('0') << problem.src_image_ids[i] << "_cam.txt";
Camera camera = ReadCamera(cam_path.str());
camera.height = image_float.rows;
camera.width = image_float.cols;
cameras.push_back(camera);
}
// Scale cameras and images
for (size_t i = 0; i < images.size(); ++i) {
if (images[i].cols <= params.max_image_size && images[i].rows <= params.max_image_size) {
continue;
}
const float factor_x = static_cast<float>(params.max_image_size) / images[i].cols;
const float factor_y = static_cast<float>(params.max_image_size) / images[i].rows;
const float factor = std::min(factor_x, factor_y);
const int new_cols = std::round(images[i].cols * factor);
const int new_rows = std::round(images[i].rows * factor);
const float scale_x = new_cols / static_cast<float>(images[i].cols);
const float scale_y = new_rows / static_cast<float>(images[i].rows);
cv::Mat_<float> scaled_image_float;
cv::resize(images[i], scaled_image_float, cv::Size(new_cols,new_rows), 0, 0, cv::INTER_LINEAR);
images[i] = scaled_image_float.clone();
cameras[i].K[0] *= scale_x;
cameras[i].K[2] *= scale_x;
cameras[i].K[4] *= scale_y;
cameras[i].K[5] *= scale_y;
cameras[i].height = scaled_image_float.rows;
cameras[i].width = scaled_image_float.cols;
}
params.depth_min = cameras[0].depth_min * 0.6f;
params.depth_max = cameras[0].depth_max * 1.2f;
std::cout << "depthe range: " << params.depth_min << " " << params.depth_max << std::endl;
params.num_images = (int)images.size();
std::cout << "num images: " << params.num_images << std::endl;
params.disparity_min = cameras[0].K[0] * params.baseline / params.depth_max;
params.disparity_max = cameras[0].K[0] * params.baseline / params.depth_min;
if (params.geom_consistency) {
depths.clear();
std::stringstream result_path;
result_path << dense_folder << "/ACMH" << "/2333_" << std::setw(8) << std::setfill('0') << problem.ref_image_id;
std::string result_folder = result_path.str();
std::string depth_path = result_folder + "/depths.dmb";
cv::Mat_<float> ref_depth;
readDepthDmb(depth_path, ref_depth);
depths.push_back(ref_depth);
size_t num_src_images = problem.src_image_ids.size();
for (size_t i = 0; i < num_src_images; ++i) {
std::stringstream result_path;
result_path << dense_folder << "/ACMH" << "/2333_" << std::setw(8) << std::setfill('0') << problem.src_image_ids[i];
std::string result_folder = result_path.str();
std::string depth_path = result_folder + "/depths.dmb";
cv::Mat_<float> depth;
readDepthDmb(depth_path, depth);
depths.push_back(depth);
}
}
}
void ACMH::CudaSpaceInitialization(const std::string &dense_folder, const Problem &problem)
{
num_images = (int)images.size();
for (int i = 0; i < num_images; ++i) {
int rows = images[i].rows;
int cols = images[i].cols;
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(32, 0, 0, 0, cudaChannelFormatKindFloat);
cudaMallocArray(&cuArray[i], &channelDesc, cols, rows);
cudaMemcpy2DToArray (cuArray[i], 0, 0, images[i].ptr<float>(), images[i].step[0], cols*sizeof(float), rows, cudaMemcpyHostToDevice);
struct cudaResourceDesc resDesc;
memset(&resDesc, 0, sizeof(cudaResourceDesc));
resDesc.resType = cudaResourceTypeArray;
resDesc.res.array.array = cuArray[i];
struct cudaTextureDesc texDesc;
memset(&texDesc, 0, sizeof(cudaTextureDesc));
texDesc.addressMode[0] = cudaAddressModeWrap;
texDesc.addressMode[1] = cudaAddressModeWrap;
texDesc.filterMode = cudaFilterModeLinear;
texDesc.readMode = cudaReadModeElementType;
texDesc.normalizedCoords = 0;
cudaCreateTextureObject(&(texture_objects_host.images[i]), &resDesc, &texDesc, NULL);
}
cudaMalloc((void**)&texture_objects_cuda, sizeof(cudaTextureObjects));
cudaMemcpy(texture_objects_cuda, &texture_objects_host, sizeof(cudaTextureObjects), cudaMemcpyHostToDevice);
cudaMalloc((void**)&cameras_cuda, sizeof(Camera) * (num_images));
cudaMemcpy(cameras_cuda, &cameras[0], sizeof(Camera) * (num_images), cudaMemcpyHostToDevice);
plane_hypotheses_host = new float4[cameras[0].height * cameras[0].width];
cudaMalloc((void**)&plane_hypotheses_cuda, sizeof(float4) * (cameras[0].height * cameras[0].width));
costs_host = new float[cameras[0].height * cameras[0].width];
cudaMalloc((void**)&costs_cuda, sizeof(float) * (cameras[0].height * cameras[0].width));
cudaMalloc((void**)&rand_states_cuda, sizeof(curandState) * (cameras[0].height * cameras[0].width));
cudaMalloc((void**)&selected_views_cuda, sizeof(unsigned int) * (cameras[0].height * cameras[0].width));
cudaMalloc((void**)&depths_cuda, sizeof(float) * (cameras[0].height * cameras[0].width));
if (params.geom_consistency) {
for (int i = 0; i < num_images; ++i) {
int rows = depths[i].rows;
int cols = depths[i].cols;
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(32, 0, 0, 0, cudaChannelFormatKindFloat);
cudaMallocArray(&cuDepthArray[i], &channelDesc, cols, rows);
cudaMemcpy2DToArray (cuDepthArray[i], 0, 0, depths[i].ptr<float>(), depths[i].step[0], cols*sizeof(float), rows, cudaMemcpyHostToDevice);
struct cudaResourceDesc resDesc;
memset(&resDesc, 0, sizeof(cudaResourceDesc));
resDesc.resType = cudaResourceTypeArray;
resDesc.res.array.array = cuDepthArray[i];
struct cudaTextureDesc texDesc;
memset(&texDesc, 0, sizeof(cudaTextureDesc));
texDesc.addressMode[0] = cudaAddressModeWrap;
texDesc.addressMode[1] = cudaAddressModeWrap;
texDesc.filterMode = cudaFilterModeLinear;
texDesc.readMode = cudaReadModeElementType;
texDesc.normalizedCoords = 0;
cudaCreateTextureObject(&(texture_depths_host.images[i]), &resDesc, &texDesc, NULL);
}
cudaMalloc((void**)&texture_depths_cuda, sizeof(cudaTextureObjects));
cudaMemcpy(texture_depths_cuda, &texture_depths_host, sizeof(cudaTextureObjects), cudaMemcpyHostToDevice);
std::stringstream result_path;
result_path << dense_folder << "/ACMH" << "/2333_" << std::setw(8) << std::setfill('0') << problem.ref_image_id;
std::string result_folder = result_path.str();
std::string depth_path = result_folder + "/depths.dmb";
std::string normal_path = result_folder + "/normals.dmb";
std::string cost_path = result_folder + "/costs.dmb";
cv::Mat_<float> ref_depth;
cv::Mat_<cv::Vec3f> ref_normal;
cv::Mat_<float> ref_cost;
readDepthDmb(depth_path, ref_depth);
depths.push_back(ref_depth);
readNormalDmb(normal_path, ref_normal);
readDepthDmb(cost_path, ref_cost);
int width = ref_depth.cols;
int height = ref_depth.rows;
for (int col = 0; col < width; ++col) {
for (int row = 0; row < height; ++row) {
int center = row * width + col;
float4 plane_hypothesis;
plane_hypothesis.x = ref_normal(row, col)[0];
plane_hypothesis.y = ref_normal(row, col)[1];
plane_hypothesis.z = ref_normal(row, col)[2];
plane_hypothesis.w = ref_depth(row, col);
plane_hypotheses_host[center] = plane_hypothesis;
costs_host[center] = ref_cost(row, col);
}
}
cudaMemcpy(plane_hypotheses_cuda, plane_hypotheses_host, sizeof(float4) * width * height, cudaMemcpyHostToDevice);
cudaMemcpy(costs_cuda, costs_host, sizeof(float) * width * height, cudaMemcpyHostToDevice);
}
}
int ACMH::GetReferenceImageWidth()
{
return cameras[0].width;
}
int ACMH::GetReferenceImageHeight()
{
return cameras[0].height;
}
cv::Mat ACMH::GetReferenceImage()
{
return images[0];
}
float4 ACMH::GetPlaneHypothesis(const int index)
{
return plane_hypotheses_host[index];
}
float ACMH::GetCost(const int index)
{
return costs_host[index];
}