-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatrix3x3.h
248 lines (232 loc) · 6.92 KB
/
matrix3x3.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
// Copyright © 2008-2023 Pioneer Developers. See AUTHORS.txt for details
// Licensed under the terms of the GPL v3. See licenses/GPL-3.txt
#ifndef _MATRIX3X3_H
#define _MATRIX3X3_H
#include "vector3.h"
#include <math.h>
#include <stdio.h>
#include <type_traits>
template <typename T>
class matrix3x3 {
private:
T cell[9];
using other_float_t = typename std::conditional<std::is_same<T, float>::value, double, float>::type;
public:
matrix3x3() {}
explicit matrix3x3(T val)
{
cell[0] = cell[1] = cell[2] = cell[3] = cell[4] = cell[5] = cell[6] =
cell[7] = cell[8] = val;
}
explicit matrix3x3(const T *vals)
{
memcpy(cell, vals, sizeof(T) * 9);
}
explicit matrix3x3(const matrix3x3<other_float_t> &m)
{
for (int i = 0; i < 9; i++)
cell[i] = T(m[i]);
}
T &operator[](const size_t i) { return cell[i]; } // used for serializing
const T &operator[](const size_t i) const { return cell[i]; }
const T *Data() const { return cell; }
T *Data() { return cell; }
vector3<T> VectorX() const { return vector3<T>(cell[0], cell[3], cell[6]); }
vector3<T> VectorY() const { return vector3<T>(cell[1], cell[4], cell[7]); }
vector3<T> VectorZ() const { return vector3<T>(cell[2], cell[5], cell[8]); }
static matrix3x3 Identity()
{
matrix3x3 m;
m.cell[1] = m.cell[2] = m.cell[3] = m.cell[5] = m.cell[6] = m.cell[7] = 0.0f;
m.cell[0] = m.cell[4] = m.cell[8] = 1.0f;
return m;
}
static matrix3x3 Scale(T x, T y, T z)
{
matrix3x3 m;
m.cell[1] = m.cell[2] = m.cell[3] = m.cell[5] = m.cell[6] = m.cell[7] = 0.0f;
m.cell[0] = x;
m.cell[4] = y;
m.cell[8] = z;
return m;
}
static matrix3x3 Scale(T scale)
{
matrix3x3 m;
m.cell[1] = m.cell[2] = m.cell[3] = m.cell[5] = m.cell[6] = m.cell[7] = 0.0f;
m.cell[0] = m.cell[4] = m.cell[8] = scale;
return m;
}
static matrix3x3 FromVectors(const vector3<T> &rx, const vector3<T> &ry, const vector3<T> &rz)
{
matrix3x3 m;
m[0] = rx.x;
m[1] = ry.x;
m[2] = rz.x;
m[3] = rx.y;
m[4] = ry.y;
m[5] = rz.y;
m[6] = rx.z;
m[7] = ry.z;
m[8] = rz.z;
return m;
}
static matrix3x3 FromVectors(const vector3<T> &rx, const vector3<T> &ry)
{
return FromVectors(rx, ry, rx.Cross(ry));
}
// (x,y,z) must be normalized
static matrix3x3 Rotate(T ang, const vector3<T> &v)
{
matrix3x3 m;
T c = cos(ang);
T s = sin(ang);
m[0] = v.x * v.x * (1 - c) + c;
m[1] = v.x * v.y * (1 - c) - v.z * s;
m[2] = v.x * v.z * (1 - c) + v.y * s;
m[3] = v.y * v.x * (1 - c) + v.z * s;
m[4] = v.y * v.y * (1 - c) + c;
m[5] = v.y * v.z * (1 - c) - v.x * s;
m[6] = v.x * v.z * (1 - c) - v.y * s;
m[7] = v.y * v.z * (1 - c) + v.x * s;
m[8] = v.z * v.z * (1 - c) + c;
return m;
}
// Note: these three are backwards compared to the right-handed rotation convention
static matrix3x3 RotateX(T radians)
{
matrix3x3 m;
T c = cos(radians);
T s = sin(radians);
m[0] = 1.0f;
m[1] = 0;
m[2] = 0;
m[3] = 0;
m[4] = c;
m[5] = s;
m[6] = 0;
m[7] = -s;
m[8] = c;
return m;
}
static matrix3x3 RotateY(T radians)
{
matrix3x3 m;
T c = cos(radians);
T s = sin(radians);
m[0] = c;
m[1] = 0;
m[2] = -s;
m[3] = 0;
m[4] = 1.0;
m[5] = 0;
m[6] = s;
m[7] = 0;
m[8] = c;
return m;
}
static matrix3x3 RotateZ(T radians)
{
matrix3x3 m;
T c = cos(radians);
T s = sin(radians);
m[0] = c;
m[1] = s;
m[2] = 0;
m[3] = -s;
m[4] = c;
m[5] = 0;
m[6] = 0;
m[7] = 0;
m[8] = 1.0;
return m;
}
friend matrix3x3 operator*(const matrix3x3 &a, const matrix3x3 &b)
{
matrix3x3 m;
m.cell[0] = a.cell[0] * b.cell[0] + a.cell[1] * b.cell[3] + a.cell[2] * b.cell[6];
m.cell[1] = a.cell[0] * b.cell[1] + a.cell[1] * b.cell[4] + a.cell[2] * b.cell[7];
m.cell[2] = a.cell[0] * b.cell[2] + a.cell[1] * b.cell[5] + a.cell[2] * b.cell[8];
m.cell[3] = a.cell[3] * b.cell[0] + a.cell[4] * b.cell[3] + a.cell[5] * b.cell[6];
m.cell[4] = a.cell[3] * b.cell[1] + a.cell[4] * b.cell[4] + a.cell[5] * b.cell[7];
m.cell[5] = a.cell[3] * b.cell[2] + a.cell[4] * b.cell[5] + a.cell[5] * b.cell[8];
m.cell[6] = a.cell[6] * b.cell[0] + a.cell[7] * b.cell[3] + a.cell[8] * b.cell[6];
m.cell[7] = a.cell[6] * b.cell[1] + a.cell[7] * b.cell[4] + a.cell[8] * b.cell[7];
m.cell[8] = a.cell[6] * b.cell[2] + a.cell[7] * b.cell[5] + a.cell[8] * b.cell[8];
return m;
}
friend vector3<T> operator*(const matrix3x3 &a, const vector3<T> &v)
{
vector3<T> out;
out.x = a.cell[0] * v.x + a.cell[1] * v.y + a.cell[2] * v.z;
out.y = a.cell[3] * v.x + a.cell[4] * v.y + a.cell[5] * v.z;
out.z = a.cell[6] * v.x + a.cell[7] * v.y + a.cell[8] * v.z;
return out;
}
// V * M same as transpose(M) * V
friend vector3<T> operator*(const vector3<T> &v, const matrix3x3 &a)
{
vector3<T> out;
out.x = a.cell[0] * v.x + a.cell[3] * v.y + a.cell[6] * v.z;
out.y = a.cell[1] * v.x + a.cell[4] * v.y + a.cell[7] * v.z;
out.z = a.cell[2] * v.x + a.cell[5] * v.y + a.cell[8] * v.z;
return out;
}
matrix3x3 Transpose() const
{
matrix3x3 m;
m[0] = cell[0];
m[1] = cell[3];
m[2] = cell[6];
m[3] = cell[1];
m[4] = cell[4];
m[5] = cell[7];
m[6] = cell[2];
m[7] = cell[5];
m[8] = cell[8];
return m;
}
matrix3x3 Inverse() const
{
// computes the inverse of a matrix m
#define cell2d(x, y) cell[((y * 3) + x)]
const T det = cell2d(0, 0) * (cell2d(1, 1) * cell2d(2, 2) - cell2d(2, 1) * cell2d(1, 2)) -
cell2d(0, 1) * (cell2d(1, 0) * cell2d(2, 2) - cell2d(1, 2) * cell2d(2, 0)) +
cell2d(0, 2) * (cell2d(1, 0) * cell2d(2, 1) - cell2d(1, 1) * cell2d(2, 0));
const T invdet = T(1.0) / det;
matrix3x3 minv; // inverse of matrix m
#define idx2d(x, y) ((y * 3) + x)
minv[idx2d(0, 0)] = (cell2d(1, 1) * cell2d(2, 2) - cell2d(2, 1) * cell2d(1, 2)) * invdet;
minv[idx2d(0, 1)] = (cell2d(0, 2) * cell2d(2, 1) - cell2d(0, 1) * cell2d(2, 2)) * invdet;
minv[idx2d(0, 2)] = (cell2d(0, 1) * cell2d(1, 2) - cell2d(0, 2) * cell2d(1, 1)) * invdet;
minv[idx2d(1, 0)] = (cell2d(1, 2) * cell2d(2, 0) - cell2d(1, 0) * cell2d(2, 2)) * invdet;
minv[idx2d(1, 1)] = (cell2d(0, 0) * cell2d(2, 2) - cell2d(0, 2) * cell2d(2, 0)) * invdet;
minv[idx2d(1, 2)] = (cell2d(1, 0) * cell2d(0, 2) - cell2d(0, 0) * cell2d(1, 2)) * invdet;
minv[idx2d(2, 0)] = (cell2d(1, 0) * cell2d(2, 1) - cell2d(2, 0) * cell2d(1, 1)) * invdet;
minv[idx2d(2, 1)] = (cell2d(2, 0) * cell2d(0, 1) - cell2d(0, 0) * cell2d(2, 1)) * invdet;
minv[idx2d(2, 2)] = (cell2d(0, 0) * cell2d(1, 1) - cell2d(1, 0) * cell2d(0, 1)) * invdet;
return minv;
}
matrix3x3 Normalized() const
{
vector3<T> x = VectorX().Normalized();
vector3<T> y = VectorZ().Cross(x).Normalized();
return FromVectors(x, y);
}
void Renormalize()
{
*this = Normalized();
}
void Print() const
{
for (int i = 0; i < 3; i++) {
printf("%.2f %.2f %.2f\n", cell[3 * i], cell[3 * i + 1], cell[3 * i + 2]);
}
printf("\n");
}
};
typedef matrix3x3<float> matrix3x3f;
typedef matrix3x3<double> matrix3x3d;
static const matrix3x3f matrix3x3fIdentity(matrix3x3f::Identity());
static const matrix3x3d matrix3x3dIdentity(matrix3x3d::Identity());
#endif /* _MATRIX3x3_H */