-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathGplugin.cpp
251 lines (215 loc) · 8.55 KB
/
Gplugin.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#include <assert.h>
#include <fstream>
#include <sstream>
#include <iostream>
#include <cmath>
#include <algorithm>
#include <sys/stat.h>
#include <time.h>
#include <cuda_runtime_api.h>
#include <cmath>
#include <ctype.h>
#include "NvInfer.h"
#include "NvCaffeParser.h"
#include "common.h"
#include <opencv2/opencv.hpp>
#include "NvInferPlugin.h"
#include <sys/time.h>
#include <fstream>
#include "Gplugin.h"
#include "GpluginGPU.h"
using namespace nvinfer1;
using namespace nvcaffeparser1;
using namespace plugin;
PreluPlugin::PreluPlugin(const Weights *weights, int nbWeights){
assert(nbWeights==1);
mWeights = weights[0];
assert(mWeights.type == DataType::kFLOAT || mWeights.type == DataType::kHALF);
mWeights.values = malloc(mWeights.count*type2size(mWeights.type));
memcpy(const_cast<void*>(mWeights.values),weights[0].values,mWeights.count*type2size(mWeights.type));
}
PreluPlugin::PreluPlugin(const void* buffer, size_t size)
{
const char* d = reinterpret_cast<const char*>(buffer), *a = d;
read<int>(d,input_c);
read<int>(d,input_h);
read<int>(d,input_w);
read<int>(d,input_count);
read<bool>(d,channel_shared_);
read<int64_t>(d,mWeights.count);
read<DataType>(d,mWeights.type);
mWeights.values = nullptr;
mWeights.values = malloc(mWeights.count * type2size(mWeights.type));//deserializeToDevice(d,mDeviceKernel,mWeights.count);
memcpy(const_cast<void*>(mWeights.values), d, mWeights.count * type2size(mWeights.type));
d += mWeights.count * type2size(mWeights.type);
assert(d == a + size);
}
PreluPlugin::~PreluPlugin()
{
//std::cout << "~PreluPlugin "<< mWeights.values << std::endl;
if (mWeights.values){
free(const_cast<void*>(mWeights.values));
}
}
Dims PreluPlugin::getOutputDimensions(int index, const Dims* inputs, int nbInputDims)
{
assert(index == 0 && nbInputDims == 1 && inputs[0].nbDims == 3);
return DimsCHW(inputs[0].d[0], inputs[0].d[1], inputs[0].d[2]);
}
void PreluPlugin::configure(const Dims*inputs, int nbInputs, const Dims* outputs, int nbOutputs, int){
input_c = inputs[0].d[0];
input_h = inputs[0].d[1];
input_w = inputs[0].d[2];
input_count = input_c * input_h * input_w;
}
size_t PreluPlugin::getSerializationSize() {
return 4*sizeof(int) + sizeof(bool) + sizeof(mWeights.count)
+ sizeof(mWeights.type) + mWeights.count * type2size(mWeights.type);
}
void PreluPlugin::serialize(void* buffer) {
char* d = static_cast<char*>(buffer), *a = d;
write(d, input_c);
write(d, input_h);
write(d, input_w);
write(d, input_count);
write(d, channel_shared_);
write(d, mWeights.count);
write(d, mWeights.type);
convertAndCopyToBuffer(d,mWeights);
assert(d == a + getSerializationSize());
}
int PreluPlugin::enqueue(int batchSize, const void*const *inputs, void** outputs, void*, cudaStream_t stream)
{
const float *bottom_data = reinterpret_cast<const float*>(inputs[0]);
float *top_data = reinterpret_cast<float*>(outputs[0]);
const int count = batchSize * input_count;
const int dim = input_h*input_w;
const int channels = input_c;
const int div_factor = channel_shared_ ? channels : 1; //channel_shared_ default is false
PReLUForward(count,channels,dim,bottom_data,top_data,mDeviceKernel,div_factor);
return 0;
}
int PreluPlugin::initialize(){
//std::cout << "~initialize "<< mDeviceKernel << std::endl;
cudaMalloc(&mDeviceKernel,mWeights.count*type2size(mWeights.type));
cudaMemcpy(mDeviceKernel,mWeights.values,mWeights.count*type2size(mWeights.type),cudaMemcpyHostToDevice);
return 0;
}
void PreluPlugin::terminate(){
if (mDeviceKernel){
//std::cout << "~terminate "<< mDeviceKernel << std::endl;
cudaFree(mDeviceKernel);
mDeviceKernel = nullptr;
}
}
bool PluginFactory::isPlugin(const char* name)
{
std::string strName {name};
std::transform(strName.begin(),strName.end(),strName.begin(),::tolower);
return(strName.find("prelu") != std::string::npos || strName.find("slice") != std::string::npos );
}
nvinfer1::IPlugin* PluginFactory::createPlugin(const char* layerName, const nvinfer1::Weights* weights, int nbWeights){
assert(isPlugin(layerName));
std::string strName {layerName};
std::transform(strName.begin(),strName.end(),strName.begin(),::tolower);
if (strName.find("prelu") != std::string::npos){
_nvPlugins[layerName] = (IPlugin*)(new PreluPlugin(weights,nbWeights));
return _nvPlugins.at(layerName);
}
else if (strName.find("slice") != std::string::npos){
_nvPlugins[layerName] = (IPlugin*)(new SliceLayer<5>({3,6,9,12,15}));
return _nvPlugins.at(layerName);
}
else{
std::cout << "warning : " << layerName << std::endl;
assert(0);
return nullptr;
}
}
nvinfer1::IPlugin* PluginFactory::createPlugin(const char* layerName, const void* serialData, size_t serialLength) {
assert(isPlugin(layerName));
std::string strName {layerName};
std::transform(strName.begin(),strName.end(),strName.begin(),::tolower);
if (strName.find("prelu") != std::string::npos){
_nvPlugins[layerName] = (IPlugin*)(new PreluPlugin(serialData,serialLength));
return _nvPlugins.at(layerName);
}
else if (strName.find("slice") != std::string::npos){
_nvPlugins[layerName] = (IPlugin*)(new SliceLayer<5>(serialData,serialLength));
return _nvPlugins.at(layerName);
}
else{
std::cout << "warning : " << layerName << std::endl;
assert(0);
return nullptr;
}
}
void PluginFactory::destroyPlugin(){
for (auto it = _nvPlugins.begin(); it!=_nvPlugins.end(); it++){
if (strstr(it->first.c_str(),"prelu")){
delete (PreluPlugin*)(it->second);
}
else if (strstr(it->first.c_str(),"slice")){
delete (SliceLayer<5>*)(it->second);
}
_nvPlugins.erase(it);
}
}
void caffeToGIEModel(const std::string& deployFile, // name for caffe prototxt
const std::string& modelFile, // name for model
const std::vector<std::string>& outputs, // network outputs
unsigned int maxBatchSize,
unsigned int workSpaceSize,
nvcaffeparser1::IPluginFactory* pluginFactory, // batch size - NB must be at least as large as the batch we want to run with)
const std::string& serializeFile) // output buffer for the GIE model
{
// create the builder
IBuilder* builder = createInferBuilder(gLogger);
IHostMemory* gieModelStream {nullptr};
// parse the caffe model to populate the network, then set the outputs
INetworkDefinition* network = builder->createNetwork();
ICaffeParser* parser = createCaffeParser();
parser->setPluginFactory(pluginFactory);
const IBlobNameToTensor* blobNameToTensor = parser->parse(deployFile.c_str(),
modelFile.c_str(),
*network,
DataType::kFLOAT);
// specify which tensors are outputs
for (auto& s : outputs)
network->markOutput(*blobNameToTensor->find(s.c_str()));
// Build the engine
builder->setMaxBatchSize(maxBatchSize);
builder->setMaxWorkspaceSize(workSpaceSize);
ICudaEngine* engine = builder->buildCudaEngine(*network);
assert(engine);
// we don't need the network any more, and we can destroy the parser
network->destroy();
parser->destroy();
// serialize the engine, then close everything down
gieModelStream = engine->serialize();
engine->destroy();
builder->destroy();
shutdownProtobufLibrary();
std::cout << "RT init done!" << std::endl;
std::ofstream out(serializeFile.c_str(),std::ios::out|std::ios::binary);
out.write((const char*)(gieModelStream->data()),gieModelStream->size());
out.close();
if (gieModelStream)
{
gieModelStream->destroy();
gieModelStream = nullptr;
}
}
void ReadModel(const std::string& fileName, std::shared_ptr<char>& engine_buffer, int& engine_buffer_size){
std::ifstream in(fileName.c_str(),std::ios::in | std::ios::binary);
if (!in.is_open()){
engine_buffer_size = 0;
engine_buffer = nullptr;
}
in.seekg(0,std::ios::end);
engine_buffer_size = in.tellg();
in.seekg(0,std::ios::beg);
engine_buffer.reset(new char[engine_buffer_size]);
in.read(engine_buffer.get(),engine_buffer_size);
in.close();
}