-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
316 lines (257 loc) · 12.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
# Copyright (c) Gorilla-Lab. All rights reserved.
import glob
import os.path as osp
import torch
import gorilla
import gorilla3d
import spconv
import sstnet
import pointgroup_ops
def get_parser():
# the default argument parser contains some
# essential parameters for distributed
parser = gorilla.core.default_argument_parser()
parser.add_argument("--config",
type=str,
default="config/default.yaml",
help="path to config file")
args_cfg = parser.parse_args()
return args_cfg
def do_train(model, cfg, logger):
model.train()
# initilize optimizer and scheduler (scheduler is optional-adjust learning rate manually)
optimizer = gorilla.build_optimizer(model, cfg.optimizer)
lr_scheduler = gorilla.build_lr_scheduler(optimizer, cfg.lr_scheduler)
# initialize criterion (Optional, can calculate in model forward)
criterion = gorilla.build_loss(cfg.loss)
# resume model/optimizer/scheduler
iter = 1
checkpoint, epoch = get_checkpoint(cfg.log_dir)
if gorilla.is_filepath(checkpoint): # read valid checkpoint file
# meta is the dict save some necessary information (last epoch/iteration, acc, loss)
meta = gorilla.resume(model=model,
filename=checkpoint,
optimizer=optimizer, # optimizer and scheduler is optional
scheduler=lr_scheduler, # to resume (can not give these paramters)
resume_optimizer=True,
resume_scheduler=True,
strict=False,
)
# get epoch from meta (Optional)
epoch = meta.get("epoch", epoch) + 1
iter = meta.get("iter", iter) + 1
# initialize train dataset
train_dataset = gorilla.build_dataset(cfg.dataset)
train_dataloader = gorilla.build_dataloader(train_dataset,
cfg.dataloader,
shuffle=True,
pin_memory=True,
drop_last=True)
# initialize tensorboard (Optional) TODO: integrating the tensorborad manager
writer = gorilla.TensorBoardWriter(cfg.log_dir) # tensorboard writer
# initialize timers (Optional)
iter_timer = gorilla.Timer()
epoch_timer = gorilla.Timer()
# loss/time buffer for epoch record (Optional)
loss_buffer = gorilla.HistoryBuffer()
iter_time = gorilla.HistoryBuffer()
data_time = gorilla.HistoryBuffer()
while epoch <= cfg.data.epochs:
for i, batch in enumerate(train_dataloader):
torch.cuda.empty_cache() # (empty cuda cache, Optional)
# calculate data loading time
data_time.update(iter_timer.since_last())
# cuda manually (TODO: integrating the data cuda operation)
##### prepare input and forward
coords = batch["locs"].cuda() # [N, 1 + 3], long, cuda, dimension 0 for batch_idx
locs_offset = batch["locs_offset"].cuda() # [B, 3], long, cuda
voxel_coords = batch["voxel_locs"].cuda() # [M, 1 + 3], long, cuda
p2v_map = batch["p2v_map"].cuda() # [N], int, cuda
v2p_map = batch["v2p_map"].cuda() # [M, 1 + maxActive], int, cuda
coords_float = batch["locs_float"].cuda() # [N, 3], float32, cuda
feats = batch["feats"].cuda() # [N, C], float32, cuda
semantic_labels = batch["semantic_labels"].cuda() # [N], long, cuda
instance_labels = batch["instance_labels"].cuda(
) # [N], long, cuda, 0~total_num_inst, -100
instance_info = batch["instance_info"].cuda(
) # [N, 9], float32, cuda, (meanxyz, minxyz, maxxyz)
instance_pointnum = batch["instance_pointnum"].cuda(
) # [total_num_inst], int, cuda
batch_offsets = batch["offsets"].cuda() # [B + 1], int, cuda
superpoint = batch["superpoint"].cuda() # [N], long, cuda
_, superpoint = torch.unique(superpoint, return_inverse=True) # [N], long, cuda
fusion_epochs = cfg.model.fusion_epochs
score_epochs = cfg.model.score_epochs
prepare_flag = (epoch > score_epochs)
fusion_flag = (epoch > fusion_epochs)
with_refine = cfg.model.with_refine
scene_list = batch["scene_list"]
spatial_shape = batch["spatial_shape"]
extra_data = {
"batch_idxs": coords[:, 0].int(),
"superpoint": superpoint,
"locs_offset": locs_offset,
"scene_list": scene_list,
"instance_labels": instance_labels,
"instance_pointnum": instance_pointnum
}
if cfg.model.use_coords:
feats = torch.cat((feats, coords_float), 1)
voxel_feats = pointgroup_ops.voxelization(
feats, v2p_map, cfg.data.mode) # [M, C]
input_ = spconv.SparseConvTensor(voxel_feats,
voxel_coords.int(),
spatial_shape,
cfg.dataloader.batch_size)
ret = model(input_,
p2v_map,
coords_float,
epoch,
extra_data)
semantic_scores = ret["semantic_scores"] # [N, nClass] float32, cuda
pt_offsets = ret["pt_offsets"] # [N, 3], float32, cuda
loss_inp = {}
loss_inp["batch_idxs"] = coords[:, 0].int()
loss_inp["feats"] = feats
loss_inp["scene_list"] = scene_list
loss_inp["semantic_scores"] = (semantic_scores, semantic_labels)
loss_inp["pt_offsets"] = (pt_offsets,
coords_float,
instance_info,
instance_labels,
instance_pointnum)
loss_inp["superpoint"] = superpoint
loss_inp["empty_flag"] = ret["empty_flag"] # avoid stack error
if fusion_flag:
loss_inp["fusion"] = ret["fusion"]
if with_refine:
loss_inp["refine"] = ret["refine"]
if prepare_flag:
loss_inp["proposals"] = ret["proposals"]
scores = ret["proposal_scores"]
# scores: (num_prop, 1) float, cuda
# proposals_idx: (sum_points, 2), int, cpu, dim 0 for cluster_id, dim 1 for corresponding point idxs in N
# proposals_offset: (num_prop + 1), int, cpu
loss_inp["proposal_scores"] = scores
loss, loss_out = criterion(loss_inp, epoch)
loss_buffer.update(loss)
# sample the learning rate(Optional)
lr = optimizer.param_groups[0]["lr"]
# write tensorboard
loss_out.update({"loss": loss, "lr": lr})
writer.update(loss_out, iter)
# # equivalent write operation
# writer.add_scalar(f"train/loss", loss, iter)
# writer.add_scalar(f"lr", lr, iter)
# # (NOTE: the `loss_out` is work for multi losses, which saves each loss item)
# for k, v in loss_out.items():
# writer.add_scalar(f"train/{k}", v[0], iter)
# backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
iter += 1
# calculate time and reset timer(Optional)
iter_time.update(iter_timer.since_start())
iter_timer.reset() # record the iteration time and reset timer
# TODO: the time manager will be integrated into gorilla-core
# calculate remain time(Optional)
remain_iter = (cfg.data.epochs - epoch + 1) * len(train_dataloader) + i + 1
remain_time = gorilla.convert_seconds(remain_iter * iter_time.avg) # convert seconds into "hours:minutes:sceonds"
print(f"epoch: {epoch}/{cfg.data.epochs} iter: {i + 1}/{len(train_dataloader)} "
f"lr: {lr:4f} loss: {loss_buffer.latest:.4f}({loss_buffer.avg:.4f}) "
f"data_time: {data_time.latest:.2f}({data_time.avg:.2f}) "
f"iter_time: {iter_time.latest:.2f}({iter_time.avg:.2f}) eta: {remain_time}")
# updata learning rate scheduler and epoch
lr_scheduler.step()
# log the epoch information
logger.info(f"epoch: {epoch}/{cfg.data.epochs}, train loss: {loss_buffer.avg}, time: {epoch_timer.since_start()}s")
iter_time.clear()
data_time.clear()
loss_buffer.clear()
# write the important information into meta
meta = {"epoch": epoch,
"iter": iter}
# save checkpoint
checkpoint = osp.join(cfg.log_dir, "epoch_{0:05d}.pth".format(epoch))
if (epoch == fusion_epochs) or (epoch == fusion_epochs):
gorilla.save_checkpoint(model=model,
filename=checkpoint,
optimizer=optimizer,
scheduler=lr_scheduler,
meta=meta)
else:
gorilla.save_checkpoint(model=model,
filename=checkpoint,
meta=meta)
logger.info("Saving " + checkpoint)
# save as latest checkpoint
latest_checkpoint = osp.join(cfg.log_dir, "epoch_latest.pth")
gorilla.save_checkpoint(model=model,
filename=latest_checkpoint,
optimizer=optimizer,
scheduler=lr_scheduler,
meta=meta)
epoch += 1
def get_checkpoint(log_dir, epoch=0, checkpoint=""):
if not checkpoint:
if epoch > 0:
checkpoint = osp.join(log_dir, "epoch_{0:05d}.pth".format(epoch))
assert osp.isfile(checkpoint)
else:
latest_checkpoint = glob.glob(osp.join(log_dir, "*latest*.pth"))
if len(latest_checkpoint) > 0:
checkpoint = latest_checkpoint[0]
else:
checkpoint = sorted(glob.glob(osp.join(log_dir, "*.pth")))
if len(checkpoint) > 0:
checkpoint = checkpoint[-1]
epoch = int(checkpoint.split("_")[-1].split(".")[0])
return checkpoint, epoch + 1
def main(args):
# read config file
cfg = gorilla.Config.fromfile(args.config)
# get logger file
log_dir, logger = gorilla.collect_logger(
prefix=osp.splitext(osp.basename(args.config))[0])
#### NOTE: can initlize the logger manually
# logger = gorilla.get_logger(log_file)
# backup the necessary file and directory(Optional, details for source code)
backup_list = ["train.py", "test.py", "sstnet", args.config]
backup_dir = osp.join(log_dir, "backup")
gorilla.backup(backup_dir, backup_list)
# merge the paramters in args into cfg
cfg = gorilla.config.merge_cfg_and_args(cfg, args)
cfg.log_dir = log_dir
# set random seed
seed = cfg.get("seed", 0)
gorilla.set_random_seed(seed)
# model
logger.info("=> creating model ...")
# create model
model = gorilla.build_model(cfg.model)
model = model.cuda()
if args.num_gpus > 1:
# convert the BatchNorm in model as SyncBatchNorm (NOTE: this will be error for low-version pytorch!!!)
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
# DDP wrap model
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[gorilla.get_local_rank()], find_unused_parameters=True)
# logger.info("Model:\n{}".format(model)) (Optional print model)
# count the paramters of model (Optional)
count_parameters = sum(gorilla.parameter_count(model).values())
logger.info(f"#classifier parameters new: {count_parameters}")
# start training
do_train(model, cfg, logger)
if __name__ == "__main__":
# get the args
args = get_parser()
# # auto using the free gpus
# gorilla.set_cuda_visible_devices(num_gpu=args.num_gpus)
gorilla.launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,) # use tuple to wrap
)