-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMatrix.h
337 lines (289 loc) · 10.3 KB
/
Matrix.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
#ifndef MATRIX_HPP
#define MATRIX_HPP
#include <cmath>
#include <future>
#include <iostream>
#include <random>
#include <string>
#include <vector>
using matrix = std::vector<std::vector<double>>;
const double EPSILON = 1e-11;
const int DIMENSION = 1000;
const std::pair<int, int> RANDOM_RANGE = {1, 10000};
class ZeroDiagonalEception : std::exception {};
void print_matrix(const matrix &mtx);
matrix create_random_matrix(int dim);
matrix create_identity_matrix(int dim);
matrix transpose_matrix(const matrix &mtx);
matrix substract_matrices(const matrix &a_matrix, const matrix &b_matrix);
void multiply_matrices_partially(const matrix &a_matrix, const matrix &b_matrix,
matrix &output, int start, int end);
matrix multiply_matrices(const matrix &a_matrix, const matrix &b_matrix);
matrix multiply_by_scalar(const matrix &a_matrix, double val);
double calculate_matrix_trace(const matrix &mtx);
matrix calculate_R_matrix(const matrix &I_matrix, const matrix &BxA_matrix);
bool check_R_matrix(const matrix &R_matrix);
matrix calculate_first_B_matrix(const matrix &trans_A_matrix,
const matrix &A_matrix);
matrix calculate_next_B_matrix(const matrix &B_matrix,
const matrix &BxA_matrix);
matrix inverse_matrix_iterative(const matrix &A_matrix);
void calculate_column(int k, matrix &A, matrix &X);
void decompose_to_LU(matrix &a_matrix);
matrix inverse_matrix(matrix &mtx);
/*
* Prints out the matrix.
* Use to debug.
*/
void print_matrix(const matrix &mtx) {
for (const auto &row : mtx) {
for (const auto &element : row)
std::cout << element << " ";
std::cout << "\n";
}
}
/*
* Create random square matrix. Its dimension is passed in argument.
* Random values range is hardcoded in RANDOM_RANGE const variable.
*/
matrix create_random_matrix(int dim) {
std::default_random_engine generator;
std::uniform_int_distribution<int> dis(RANDOM_RANGE.first,
RANDOM_RANGE.second);
matrix random_matrix((dim), std::vector<double>(dim));
for (auto &row : random_matrix)
for (auto &element : row)
element = dis(generator);
return random_matrix;
}
/*
* Create matrix with ones on the main diagonal and zeros elsewhere.
*/
matrix create_identity_matrix(int dim) {
matrix i_matrix((dim), std::vector<double>(dim));
i_matrix[0][0] = 1.0;
for (int n = 0; n < dim; ++n)
for (int m = 0; m < dim; ++m)
if (n == m)
i_matrix[n][m] = 1.0;
return i_matrix;
}
/*
* Transposes square matrix.
*/
matrix transpose_matrix(const matrix &mtx) {
size_t size = mtx.size();
matrix t_matrix((size), std::vector<double>(size));
for (size_t i = 0; i < size; ++i)
for (size_t j = 0; j < size; ++j)
t_matrix[j][i] = mtx[i][j];
return t_matrix;
}
/*
* Substracts matrix A from matrix B
*/
matrix substract_matrices(const matrix &a_matrix, const matrix &b_matrix) {
size_t size = a_matrix.size();
matrix s_matrix((size), std::vector<double>(size));
for (size_t i = 0; i < size; ++i)
for (size_t j = 0; j < size; ++j)
s_matrix[i][j] = a_matrix[i][j] - b_matrix[i][j];
return s_matrix;
}
/*
* Multiplies part of matrix A by part of matrix B
*/
void multiply_matrices_partially(const matrix &a_matrix, const matrix &b_matrix,
matrix &m_matrix, int start, int end) {
size_t size = a_matrix.size();
for (size_t i = start; i < end; ++i) {
for (size_t j = 0; j < size; ++j) {
for (size_t k = 0; k < size; k++)
m_matrix[i][j] += a_matrix[i][k] * b_matrix[k][j];
}
}
}
/*
* Multiplies matrix A by matrix B - parallel
*/
matrix multiply_matrices(const matrix &a_matrix, const matrix &b_matrix) {
size_t m_size = a_matrix.size();
size_t thread_size = 2;
int rest = m_size % thread_size;
matrix m_matrix((m_size), std::vector<double>(m_size));
std::vector<std::future<void>> v;
if (thread_size < m_size) {
for (auto i = 0; i < thread_size; ++i) {
v.push_back(std::async(
std::launch::async, multiply_matrices_partially,
std::ref(a_matrix), std::ref(b_matrix), std::ref(m_matrix),
i * std::floor(m_size / thread_size),
std::floor(m_size / thread_size) * (i + 1)));
}
}
if (rest != 0)
v.push_back(std::async(
std::launch::async, multiply_matrices_partially, std::ref(a_matrix),
std::ref(b_matrix), std::ref(m_matrix),
thread_size * std::floor(m_size / thread_size), m_size));
for (auto it = v.begin(); v.end() != it; it++) {
(*it).get();
}
return m_matrix;
}
/*
* Multiplies matrix A by matrix B - no parallelisation
*/
// matrix multiply_matrices(const matrix &a_matrix, const matrix &b_matrix) {
// matrix m_matrix((a_matrix.size()), std::vector<double>(a_matrix.size()));
// for (size_t i = 0; i < a_matrix.size(); ++i) {
// for (size_t j = 0; j < a_matrix[0].size(); ++j) {
// for (size_t k = 0; k < a_matrix.size(); k++)
// m_matrix[i][j] += a_matrix[i][k] * b_matrix[k][j];
// }
// }
// return m_matrix;
// }
/*
* Multiplies matrix A by scalar value
*/
matrix multiply_by_scalar(const matrix &a_matrix, double val) {
size_t size = a_matrix.size();
matrix m_matrix((size), std::vector<double>(size));
for (size_t i = 0; i < size; ++i)
for (size_t j = 0; j < size; ++j)
m_matrix[i][j] = a_matrix[i][j] * val;
return m_matrix;
}
/*
* Calculate matrix trace - sum of elements on diagonal.
*/
double calculate_matrix_trace(const matrix &mtx) {
double trace = 0;
size_t size = mtx.size();
for (int i = 0; i < size; ++i)
for (int j = 0; j < size; ++j)
if (i == j)
trace += mtx[i][j];
return trace;
}
/*
* Calculates residual matrix, which measures how matrix B
* differs from matrix A.
*/
matrix calculate_R_matrix(const matrix &I_matrix, const matrix &BxA_matrix) {
matrix R_matrix = substract_matrices(I_matrix, BxA_matrix);
return R_matrix;
}
/*
* If value of R_matrix is small enough, return true, else return false.
*/
bool check_R_matrix(const matrix &R_matrix) {
// double R_matrix_sum = 0.0;
for (const auto &row : R_matrix)
for (const auto &element : row)
if (fabs(element) > EPSILON)
return false;
return true;
}
/*
* Calculates first aproximation of inversed A_matrix called B_matrix
*/
matrix calculate_first_B_matrix(const matrix &trans_A_matrix,
const matrix &A_matrix) {
matrix B_matrix = multiply_by_scalar(
trans_A_matrix, 1 / calculate_matrix_trace(
multiply_matrices(trans_A_matrix, A_matrix)));
return B_matrix;
}
/*
* Calculates next aproximation of inversed A_matrix called B_matrix
*/
matrix calculate_next_B_matrix(const matrix &B_matrix,
const matrix &BxA_matrix) {
auto f1 = std::async(std::launch::async, multiply_by_scalar, B_matrix, 2);
auto f2 =
std::async(std::launch::async, multiply_matrices, BxA_matrix, B_matrix);
matrix next_B_matrix = substract_matrices(f1.get(), f2.get());
return next_B_matrix;
}
/*
* Inverses matrix with fast iterative method
*/
matrix inverse_matrix_iterative(const matrix &A_matrix) {
std::future<matrix> f1 =
std::async(std::launch::async, transpose_matrix, A_matrix);
std::future<matrix> f2 =
std::async(std::launch::async, create_identity_matrix, A_matrix.size());
matrix B_matrix = calculate_first_B_matrix(f1.get(), A_matrix);
const matrix I_matrix = f2.get();
matrix R_matrix =
calculate_R_matrix(I_matrix, multiply_matrices(B_matrix, A_matrix));
while (!check_R_matrix(R_matrix)) {
matrix BxA_matrix = multiply_matrices(B_matrix, A_matrix);
std::future<matrix> f_B = std::async(
std::launch::async, calculate_next_B_matrix, B_matrix, BxA_matrix);
std::future<matrix> f_R = std::async(
std::launch::async, calculate_R_matrix, I_matrix, BxA_matrix);
R_matrix = f_R.get();
B_matrix = f_B.get();
}
return B_matrix;
}
/*
* Factorization of a given square matrix into two triangular matrices L and U.
* Matrices are merged in the given square matrix.
*/
void decompose_to_LU(matrix &a_matrix) {
for (int k = 0; k < a_matrix.size() - 1; ++k) {
if (fabs(a_matrix[k][k]) < EPSILON)
throw ZeroDiagonalEception();
for (int i = k + 1; i < a_matrix[0].size(); ++i)
a_matrix[i][k] /= a_matrix[k][k];
for (int i = k + 1; i < a_matrix.size(); ++i)
for (int j = k + 1; j < a_matrix[0].size(); ++j)
a_matrix[i][j] -= a_matrix[i][k] * a_matrix[k][j];
}
}
/*** Matrix inversion using non-iterative method. ***/
/*** Used for tests purposes. ***/
/*
* Calculate column of inversed matrix.
*/
void calculate_column(int k, matrix &a_matrix, matrix &x_matrix) {
for (int i = 1; i < a_matrix.size(); ++i) {
double s = 0;
for (int j = 0; j < i; ++j)
s += a_matrix[i][j] * x_matrix[j][k];
x_matrix[i][k] -= s;
}
if (fabs(a_matrix[a_matrix.size() - 1][a_matrix[0].size() - 1]) < EPSILON)
throw ZeroDiagonalEception();
x_matrix[x_matrix.size() - 1][k] /=
a_matrix[a_matrix.size() - 1][a_matrix[0].size() - 1];
for (int i = x_matrix.size() - 2; i >= 0; --i) {
double s = 0;
for (int j = i + 1; j < a_matrix[0].size(); ++j)
s += a_matrix[i][j] * x_matrix[j][k];
if (fabs(a_matrix[i][i]) < EPSILON)
throw ZeroDiagonalEception();
x_matrix[i][k] = (x_matrix[i][k] - s) / a_matrix[i][i];
}
}
/*
* Inverses given matrix.
*/
matrix inverse_matrix(matrix &a_matrix) {
matrix i_matrix = create_identity_matrix(a_matrix.size());
try {
decompose_to_LU(a_matrix);
for (int i = 0; i < a_matrix.size(); ++i)
calculate_column(i, a_matrix, i_matrix);
} catch (ZeroDiagonalEception &) {
std::cout << "Division by zero exception!\n"
<< "There was a zero on the diagonal of a matrix.\n";
exit(EXIT_FAILURE);
}
return i_matrix;
}
#endif