-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdata_processing.py
1185 lines (1021 loc) · 49.7 KB
/
data_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy as np
import torch
import csv
from rdkit import Chem
import torch
from networkx import read_graph6
from torch_geometric.data import InMemoryDataset, Data
from torch_geometric.data import DataLoader
import utils
import os
import random
import shutil
from itertools import repeat
# from k_gnn import GraphConv, DataLoader, avg_pool
# from k_gnn import TwoMalkin, ConnectedThreeMalkin
import os
import os.path as osp
import sys
from typing import Callable, List, Optional
import torch.nn.functional as F
from torch_scatter import scatter
from tqdm import tqdm
from torch_geometric.data import (
Data,
InMemoryDataset,
download_url,
extract_zip,
)
from torch_geometric.io import read_tu_data
import scipy.io as scio
from utils import k_hop_subgraph, subgraph_to_subgraph2
import networkx as nx
class pygdataset(InMemoryDataset):
def __init__(self, url=None, dataname='mols', root='data', processed_name='processed', homo=True,
transform=None, pre_transform=None, pre_filter=None):
self.url = url
self.root = root
self.dataname = dataname
self.transform = transform
self.homo = homo
self.pre_filter = pre_filter
self.pre_transform = pre_transform
self.raw = os.path.join(root, dataname)
self.processed = os.path.join(root, dataname, processed_name)
super(pygdataset, self).__init__(root=root, transform=transform, pre_transform=pre_transform,
pre_filter=pre_filter)
self.data, self.slices = torch.load(self.processed_paths[0])
self.x_dim = self.data.x.size(-1)
self.y_dim = self.data.y.size(-1)
self.e_dim = torch.max(self.data.edge_attr).item() + 1
@property
def raw_dir(self):
name = 'raw'
return os.path.join(self.root, self.dataname, name)
@property
def processed_dir(self):
return self.processed
@property
def raw_file_names(self):
names = ["data"]
return ['{}_{}.npy'.format(name, self.dataname) for name in names]
@property
def processed_file_names(self):
return ['data.pt']
def adj2data(self, d):
# x: (n, d), A: (e, n, n)
x, A, y = d['x'], d['A'], d['y']
x = torch.tensor(x)
if self.homo:
x = torch.ones_like(x)
assert x.size(0) == A.shape[-1]
begin, end = np.where(np.sum(A, axis=0) == 1.)
edge_index = torch.tensor(np.array([begin, end]))
edge_attr = torch.argmax(torch.tensor(A[:, begin, end].T), dim=-1)
# y = torch.tensor(np.concatenate((y[1], y[-1])))
y = torch.tensor(y[-1])
y = y.view([1, len(y)])
return Data(x=x, edge_index=edge_index, edge_attr=edge_attr, y=y)
@staticmethod
def wrap2data(d):
# x: (n, d), A: (e, n, n)
x, A, y = d['x'], d['A'], d['y']
x = torch.tensor(x)
begin, end = np.where(np.sum(A, axis=0) == 1.)
edge_index = torch.tensor(np.array([begin, end]))
edge_attr = torch.argmax(torch.tensor(A[:, begin, end].T), dim=-1)
y = torch.tensor(y[-1:])
return Data(x=x, edge_index=edge_index, edge_attr=edge_attr, y=y)
def process(self):
# process npy data into pyg.Data
print('Processing data from ' + self.raw_dir + '...')
raw_data = np.load(os.path.join(self.raw_dir, "data_" + self.dataname + ".npy"), allow_pickle=True)
data_list = [self.adj2data(d) for d in raw_data]
if self.pre_filter is not None:
data_list = [data for data in data_list if self.pre_filter(data)]
if self.pre_transform is not None:
temp = []
for i, data in enumerate(data_list):
if i % 100 == 0:
print(i)
temp.append(self.pre_transform(data))
data_list = temp
# data_list = [self.pre_transform(data) for data in data_list]
data, slices = self.collate(data_list)
torch.save((data, slices), self.processed_paths[0])
class dataset_count(InMemoryDataset):
def __init__(self, url=None, dataname='counting', root='data', processed_name='processed',
transform=None, pre_transform=None, pre_filter=None):
self.url = url
self.root = root
self.dataname = dataname
self.transform = transform
self.pre_filter = pre_filter
self.pre_transform = pre_transform
self.raw = os.path.join(root, dataname)
self.processed = os.path.join(root, dataname, processed_name)
super(dataset_count, self).__init__(root=root, transform=transform, pre_transform=pre_transform,
pre_filter=pre_filter)
self.data, self.slices = torch.load(self.processed_paths[0])
self.y_dim = self.data.y.size(-1)
# self.e_dim = torch.max(self.data.edge_attr).item() + 1
@property
def raw_dir(self):
name = 'raw'
return os.path.join(self.root, self.dataname, name)
@property
def processed_dir(self):
return self.processed
@property
def raw_file_names(self):
names = ["data"]
return ['{}.npy'.format(name) for name in names]
@property
def processed_file_names(self):
return ['data.pt']
def adj2data(self, d):
# x: (n, d), A: (e, n, n)
A, y = d['A'], d['y']
begin, end = np.where(np.sum(A, axis=0) == 1.)
edge_index = torch.tensor(np.array([begin, end]))
# edge_attr = torch.argmax(torch.tensor(A[:, begin, end].T), dim=-1)
# y = torch.tensor(np.concatenate((y[1], y[-1])))
# y = torch.tensor(y[-1])
# y = y.view([1, len(y)])
# sanity check
assert np.min(begin) == 0
num_nodes = np.max(begin) + 1
if y.ndim == 1:
y = y.reshape([1, -1])
return Data(edge_index=edge_index, y=torch.tensor(y), num_nodes=torch.tensor([num_nodes]))
@staticmethod
def wrap2data(d):
# x: (n, d), A: (e, n, n)
x, A, y = d['x'], d['A'], d['y']
x = torch.tensor(x)
begin, end = np.where(np.sum(A, axis=0) == 1.)
edge_index = torch.tensor(np.array([begin, end]))
edge_attr = torch.argmax(torch.tensor(A[:, begin, end].T), dim=-1)
y = torch.tensor(y[-1:])
return Data(x=x, edge_index=edge_index, edge_attr=edge_attr, y=y)
def process(self):
# process npy data into pyg.Data
print('Processing data from ' + self.raw_dir + '...')
raw_data = np.load(self.raw_paths[0], allow_pickle=True)
data_list = [self.adj2data(d) for d in raw_data]
if self.pre_filter is not None:
data_list = [data for data in data_list if self.pre_filter(data)]
if self.pre_transform is not None:
temp = []
for i, data in enumerate(data_list):
if i % 100 == 0:
print('Pre-processing %d/%d' % (i, len(data_list)))
temp.append(self.pre_transform(data))
data_list = temp
# data_list = [self.pre_transform(data) for data in data_list]
data, slices = self.collate(data_list)
torch.save((data, slices), self.processed_paths[0])
class dataset_random_graph(InMemoryDataset):
def __init__(self, url=None, dataname='count_cycle', root='data', processed_name='processed', split='train',
transform=None, pre_transform=None, pre_filter=None):
self.url = url
self.root = root
self.dataname = dataname
self.transform = transform
self.pre_filter = pre_filter
self.pre_transform = pre_transform
self.raw = os.path.join(root, dataname)
self.processed = os.path.join(root, dataname, processed_name)
super(dataset_random_graph, self).__init__(root=root, transform=transform, pre_transform=pre_transform,
pre_filter=pre_filter)
split_id = 0 if split == 'train' else 1 if split == 'val' else 2
self.data, self.slices = torch.load(self.processed_paths[split_id])
self.y_dim = self.data.y.size(-1)
# self.e_dim = torch.max(self.data.edge_attr).item() + 1
@property
def raw_dir(self):
name = 'raw'
return os.path.join(self.root, self.dataname, name)
@property
def processed_dir(self):
return self.processed
@property
def raw_file_names(self):
names = ["data"]
return ['{}.mat'.format(name) for name in names]
@property
def processed_file_names(self):
return ['data_tr.pt', 'data_val.pt', 'data_te.pt']
def adj2data(self, A, y):
# x: (n, d), A: (e, n, n)
# begin, end = np.where(np.sum(A, axis=0) == 1.)
begin, end = np.where(A == 1.)
edge_index = torch.tensor(np.array([begin, end]))
# edge_attr = torch.argmax(torch.tensor(A[:, begin, end].T), dim=-1)
# y = torch.tensor(np.concatenate((y[1], y[-1])))
# y = torch.tensor(y[-1])
# y = y.view([1, len(y)])
# sanity check
# assert np.min(begin) == 0
num_nodes = A.shape[0]
if y.ndim == 1:
y = y.reshape([1, -1])
return Data(edge_index=edge_index, y=torch.tensor(y), num_nodes=torch.tensor([num_nodes]))
@staticmethod
def wrap2data(d):
# x: (n, d), A: (e, n, n)
x, A, y = d['x'], d['A'], d['y']
x = torch.tensor(x)
begin, end = np.where(np.sum(A, axis=0) == 1.)
edge_index = torch.tensor(np.array([begin, end]))
edge_attr = torch.argmax(torch.tensor(A[:, begin, end].T), dim=-1)
y = torch.tensor(y[-1:])
return Data(x=x, edge_index=edge_index, edge_attr=edge_attr, y=y)
def process(self):
# process npy data into pyg.Data
print('Processing data from ' + self.raw_dir + '...')
raw_data = scio.loadmat(self.raw_paths[0])
if raw_data['F'].shape[0] == 1:
data_list_all = [[self.adj2data(raw_data['A'][0][i], raw_data['F'][0][i]) for i in idx]
for idx in [raw_data['train_idx'][0], raw_data['val_idx'][0], raw_data['test_idx'][0]]]
else:
data_list_all = [[self.adj2data(A, y) for A, y in zip(raw_data['A'][0][idx][0], raw_data['F'][idx][0])]
for idx in [raw_data['train_idx'], raw_data['val_idx'], raw_data['test_idx']]]
for save_path, data_list in zip(self.processed_paths, data_list_all):
print('pre-transforming for data at'+save_path)
if self.pre_filter is not None:
data_list = [data for data in data_list if self.pre_filter(data)]
if self.pre_transform is not None:
temp = []
for i, data in enumerate(data_list):
if i % 100 == 0:
print('Pre-processing %d/%d' % (i, len(data_list)))
temp.append(self.pre_transform(data))
data_list = temp
# data_list = [self.pre_transform(data) for data in data_list]
data, slices = self.collate(data_list)
torch.save((data, slices), save_path)
class dataset_sr25(InMemoryDataset):
def __init__(self, url=None, dataname='sr25', root='data', processed_name='processed',
transform=None, pre_transform=None, pre_filter=None):
self.url = url
self.root = root
self.dataname = dataname
self.transform = transform
self.pre_filter = pre_filter
self.pre_transform = pre_transform
self.raw = os.path.join(root, dataname)
self.processed = os.path.join(root, dataname, processed_name)
super(dataset_sr25, self).__init__(root=root, transform=transform, pre_transform=pre_transform,
pre_filter=pre_filter)
self.data, self.slices = torch.load(self.processed_paths[0])
# self.e_dim = torch.max(self.data.edge_attr).item() + 1
@property
def raw_dir(self):
name = 'raw'
return os.path.join(self.root, self.dataname, name)
@property
def processed_dir(self):
return self.processed
@property
def raw_file_names(self):
names = ["data"]
return ['{}.g6'.format(name) for name in names]
@property
def processed_file_names(self):
return ['data.pt']
def nx2data(self, d):
# x: (n, d), A: (e, n, n)
# begin, end = np.where(np.sum(A, axis=0) == 1.)
edge_index = np.array(list(d.edges)).T
edge_index = np.concatenate([edge_index, np.array([edge_index[-1], edge_index[0]])], axis=-1)
edge_index = torch.tensor(edge_index).long()
return Data(edge_index=edge_index, num_nodes=torch.max(edge_index).item()+1)
@staticmethod
def wrap2data(d):
# x: (n, d), A: (e, n, n)
x, A, y = d['x'], d['A'], d['y']
x = torch.tensor(x)
begin, end = np.where(np.sum(A, axis=0) == 1.)
edge_index = torch.tensor(np.array([begin, end]))
edge_attr = torch.argmax(torch.tensor(A[:, begin, end].T), dim=-1)
y = torch.tensor(y[-1:])
return Data(x=x, edge_index=edge_index, edge_attr=edge_attr, y=y)
def process(self):
# process npy data into pyg.Data
print('Processing data from ' + self.raw_dir + '...')
raw_data = read_graph6(self.raw_paths[0])
data_list = [self.nx2data(d) for d in raw_data]
print('pre-transforming for data at'+self.processed_paths[0])
if self.pre_transform is not None:
data_list = [self.pre_transform(d) for d in data_list]
data, slices = self.collate(data_list)
torch.save((data, slices), self.processed_paths[0])
class dataset_airport(InMemoryDataset):
def __init__(self, url=None, dataset='brazil', root='data', processed_name='processed',
transform=None, pre_filter=None, h=3, node_label='spd', use_rd=True, model='Nested2_k1_GNN'):
self.url = url
self.root = root
self.dataname = os.path.join('airport', dataset)
self.transform = transform
self.pre_filter = pre_filter
# self.pre_transform = pre_transform
self.h = h
self.node_label = node_label
self.use_rd = use_rd
self.model = model
self.raw = os.path.join(root, self.dataname)
self.processed = os.path.join(root, self.dataname, processed_name)
super(dataset_airport, self).__init__(root=root, transform=transform, pre_filter=pre_filter)
self.data, self.slices = torch.load(self.processed_paths[0])
# self.e_dim = torch.max(self.data.edge_attr).item() + 1
@property
def raw_dir(self):
return self.raw
@property
def processed_dir(self):
return self.processed
@property
def raw_file_names(self):
names = ["edges", "labels"]
return ['{}.txt'.format(name) for name in names]
@property
def processed_file_names(self):
return ['data.pt']
def node2data(self, edge_index, node, degree):
# x: (n, d), A: (e, n, n)
# begin, end = np.where(np.sum(A, axis=0) == 1.)
ind, y = node
nodes_, edge_index_, edge_mask_, z_, relabel = \
k_hop_subgraph(ind, self.h, edge_index=edge_index, relabel_nodes=True, node_label=self.node_label)
assert len(nodes_) == torch.max(edge_index_).item() + 1
d = np.array(degree(np.array(relabel)))[:, 1]
return Data(edge_index=edge_index_, num_nodes=len(nodes_), x=torch.tensor(d).float(),z=z_, y=y)
@staticmethod
def read_label(f_path):
fin_labels = open(f_path)
labels = []
node_id_mapping = dict()
for new_id, line in enumerate(fin_labels.readlines()):
old_id, label = line.strip().split()
labels.append(int(label))
node_id_mapping[old_id] = new_id
fin_labels.close()
return labels, node_id_mapping
@staticmethod
def read_edges(f_path, node_id_mapping):
edges = []
fin_edges = open(f_path)
for line in fin_edges.readlines():
node1, node2 = line.strip().split()[:2]
edges.append([node_id_mapping[node1], node_id_mapping[node2]])
fin_edges.close()
return edges
def process(self):
# process npy data into pyg.Data
print('Processing data from ' + self.raw_dir + '...')
edges, labels = [], []
labels, node_id_mapping = self.read_label(self.raw_paths[1])
edges = self.read_edges(self.raw_paths[0], node_id_mapping)
G = nx.Graph(edges)
degree = G.degree
edge_index = torch.tensor(edges).long().t().contiguous()
edge_index = torch.cat([edge_index, edge_index[[1, 0], :]], dim=-1)
data_list = [self.node2data(edge_index, node, degree) for node in enumerate(labels)]
if self.model == 'Nested2_k1_GNN':
print('pre-transforming for data at'+self.processed_paths[0])
data_list_new = []
for i, d in enumerate(data_list):
if i % 100 == 0:
print('Preprocessing: %d/%d'%(i, len(data_list)))
d_new = subgraph_to_subgraph2(d, self.h, use_rd=self.use_rd)
d_new.y = d.y
data_list_new.append(d_new)
data_list = data_list_new
data, slices = self.collate(data_list)
torch.save((data, slices), self.processed_paths[0])
def load_raw_csv(data_path):
data = []
with open(data_path, mode='r') as csv_file:
csv_reader = csv.DictReader(csv_file)
line_count = 0
for row in csv_reader:
data.append(row)
return data
def write_csv(data, save_path):
# first data into row
data_save = {}
for k in data[0].keys():
data_save[k] = [data[0][k]]
for i in range(1, len(data)):
for k in data[0].keys():
data_save[k].append(data[i][k])
with open(save_path, mode='w', newline="") as outfile:
writer = csv.writer(outfile)
# pass the dictionary keys to writerow
# function to frame the columns of the csv file
writer.writerow(data_save.keys())
# make use of writerows function to append
# the remaining values to the corresponding
# columns using zip function.
writer.writerows(zip(*data_save.values()))
def create_one_hot_label(d, max_num_rings):
# please manually define this function replying on the labels you want
num_labels = 2 + (1 + max_num_rings) + 2 # 1-bit for HAS RING, 1-bit for HAS tricycles
labels = []
# if has ring
flag = [1., 0] if d['has_rings'] == 'True' else [0, 1.]
labels.append(np.array(flag).astype(np.float32))
# how many rings
flag = np.eye(max_num_rings + 1)[int(d['nring'])]
labels.append(flag.astype(np.float32))
# if has 3-ring
# flag = [1., 0] if int(d['natom_in_3_rings']) > 0 else [0, 1.]
# mol = Chem.MolFromSmiles(Chem.CanonSmiles(d['smiles']))
# flag = utils.detect_triple_ring(mol)
flag = [1., 0] if d['has_triple_ring'] == 'True' else [0, 1.]
labels.append(np.array(flag).astype(np.float32))
return labels
def smi2graph(smi, node_voc, edge_voc):
# transform smiles into node features x and edge features A using vocabularies node_voc and edge_voc
mol = Chem.MolFromSmiles(Chem.CanonSmiles(smi))
num_atoms = mol.GetNumAtoms()
num_node_type = len(node_voc)
num_edge_type = len(edge_voc)
x = np.zeros([num_atoms, num_node_type])
A = np.zeros([num_edge_type, num_atoms, num_atoms])
for i, atom in enumerate(mol.GetAtoms()):
x[i, node_voc[atom.GetAtomicNum()]] = 1.
for edge in mol.GetBonds():
begin_idx = edge.GetBeginAtomIdx()
end_idx = edge.GetEndAtomIdx()
bond_type = edge.GetBondType()
A[edge_voc[bond_type], begin_idx, end_idx] = 1.
A[edge_voc[bond_type], end_idx, begin_idx] = 1.
return x, A
def data_preprocessing(raw_data):
# data_preprocessing: 1. create two dictionary for label mapping; 2. create a preprocessed data file
processed_data = []
label_dict = {}
# create type <-> index mapping
print('Vocabulary generation...')
max_num_rings = 0
node_attr_set = set()
edge_attr_set = set()
for d in raw_data:
mol = Chem.MolFromSmiles(Chem.CanonSmiles(d['smiles']))
for atom in mol.GetAtoms():
node_attr_set.add(atom.GetAtomicNum())
for edge in mol.GetBonds():
edge_attr_set.add(edge.GetBondType())
if int(d['nring']) > max_num_rings:
max_num_rings = int(d['nring'])
num_node_type = len(node_attr_set)
num_edge_type = len(edge_attr_set)
node_voc = {}
edge_voc = {}
for i, node_type in enumerate(node_attr_set):
node_voc[node_type] = i
for i, edge_type in enumerate(edge_attr_set):
edge_voc[edge_type] = i
print('Vocabulary generation done!')
# create one hot features and labels
print('Features generation...')
num_samples = len(raw_data)
for i, d in enumerate(raw_data):
if i % 500 == 0:
print('\r' + 'Generation process: %d/%d' % (i, num_samples), end="")
# add processed data point
x, A = smi2graph(d['smiles'], node_voc, edge_voc)
processed_dp = {}
processed_dp['smiles'] = d['smiles']
processed_dp['x'] = x.astype(np.float32)
processed_dp['A'] = A.astype(np.float32)
processed_dp['num_nodes'] = x.shape[0]
processed_dp['y'] = create_one_hot_label(d, max_num_rings)
processed_data.append(processed_dp)
print('\nFeatures generation done!')
voc = {}
voc['node_voc'] = node_voc
voc['edge_voc'] = edge_voc
return processed_data, voc
class graph_dataset(torch.utils.data.Dataset):
def __init__(self, graphs, homo=False):
# raw data is a list of smiles and other labels
self.graphs = graphs
self.max_num_atoms = 0
self.num_samples = len(graphs)
for g in self.graphs:
num_atoms = g['num_nodes']
if num_atoms > self.max_num_atoms:
self.max_num_atoms = num_atoms
self.homo = homo
def __len__(self):
return self.num_samples
def __getitem__(self, item):
# pad to max num of nodes
x, A, y = self.graphs[item]['x'], self.graphs[item]['A'], self.graphs[item]['y']
if self.homo:
x = np.zeros_like(x)
x[:, 0] = 1.
x = np.pad(x, ((0, self.max_num_atoms - x.shape[0]), (0, 0)))
A = np.pad(A, ((0, 0), (0, self.max_num_atoms - A.shape[1]), (0, self.max_num_atoms - A.shape[2])))
return {'x': x, 'A': A, 'y': y, 'num_nodes': self.graphs[item]['num_nodes'], 'node_mask': np.sum(x, axis=-1, keepdims=True)}
HAR2EV = 27.211386246
KCALMOL2EV = 0.04336414
conversion = torch.tensor([
1., 1., HAR2EV, HAR2EV, HAR2EV, 1., HAR2EV, HAR2EV, HAR2EV, HAR2EV, HAR2EV,
1., KCALMOL2EV, KCALMOL2EV, KCALMOL2EV, KCALMOL2EV, 1., 1., 1.
])
atomrefs = {
6: [0., 0., 0., 0., 0.],
7: [
-13.61312172, -1029.86312267, -1485.30251237, -2042.61123593,
-2713.48485589
],
8: [
-13.5745904, -1029.82456413, -1485.26398105, -2042.5727046,
-2713.44632457
],
9: [
-13.54887564, -1029.79887659, -1485.2382935, -2042.54701705,
-2713.42063702
],
10: [
-13.90303183, -1030.25891228, -1485.71166277, -2043.01812778,
-2713.88796536
],
11: [0., 0., 0., 0., 0.],
}
class QM9(InMemoryDataset):
r"""The QM9 dataset from the `"MoleculeNet: A Benchmark for Molecular
Machine Learning" <https://arxiv.org/abs/1703.00564>`_ paper, consisting of
about 130,000 molecules with 19 regression targets.
Each molecule includes complete spatial information for the single low
energy conformation of the atoms in the molecule.
In addition, we provide the atom features from the `"Neural Message
Passing for Quantum Chemistry" <https://arxiv.org/abs/1704.01212>`_ paper.
+--------+----------------------------------+-----------------------------------------------------------------------------------+---------------------------------------------+
| Target | Property | Description | Unit |
+========+==================================+===================================================================================+=============================================+
| 0 | :math:`\mu` | Dipole moment | :math:`\textrm{D}` |
+--------+----------------------------------+-----------------------------------------------------------------------------------+---------------------------------------------+
| 1 | :math:`\alpha` | Isotropic polarizability | :math:`{a_0}^3` |
+--------+----------------------------------+-----------------------------------------------------------------------------------+---------------------------------------------+
| 2 | :math:`\epsilon_{\textrm{HOMO}}` | Highest occupied molecular orbital energy | :math:`\textrm{eV}` |
+--------+----------------------------------+-----------------------------------------------------------------------------------+---------------------------------------------+
| 3 | :math:`\epsilon_{\textrm{LUMO}}` | Lowest unoccupied molecular orbital energy | :math:`\textrm{eV}` |
+--------+----------------------------------+-----------------------------------------------------------------------------------+---------------------------------------------+
| 4 | :math:`\Delta \epsilon` | Gap between :math:`\epsilon_{\textrm{HOMO}}` and :math:`\epsilon_{\textrm{LUMO}}` | :math:`\textrm{eV}` |
+--------+----------------------------------+-----------------------------------------------------------------------------------+---------------------------------------------+
| 5 | :math:`\langle R^2 \rangle` | Electronic spatial extent | :math:`{a_0}^2` |
+--------+----------------------------------+-----------------------------------------------------------------------------------+---------------------------------------------+
| 6 | :math:`\textrm{ZPVE}` | Zero point vibrational energy | :math:`\textrm{eV}` |
+--------+----------------------------------+-----------------------------------------------------------------------------------+---------------------------------------------+
| 7 | :math:`U_0` | Internal energy at 0K | :math:`\textrm{eV}` |
+--------+----------------------------------+-----------------------------------------------------------------------------------+---------------------------------------------+
| 8 | :math:`U` | Internal energy at 298.15K | :math:`\textrm{eV}` |
+--------+----------------------------------+-----------------------------------------------------------------------------------+---------------------------------------------+
| 9 | :math:`H` | Enthalpy at 298.15K | :math:`\textrm{eV}` |
+--------+----------------------------------+-----------------------------------------------------------------------------------+---------------------------------------------+
| 10 | :math:`G` | Free energy at 298.15K | :math:`\textrm{eV}` |
+--------+----------------------------------+-----------------------------------------------------------------------------------+---------------------------------------------+
| 11 | :math:`c_{\textrm{v}}` | Heat capavity at 298.15K | :math:`\frac{\textrm{cal}}{\textrm{mol K}}` |
+--------+----------------------------------+-----------------------------------------------------------------------------------+---------------------------------------------+
| 12 | :math:`U_0^{\textrm{ATOM}}` | Atomization energy at 0K | :math:`\textrm{eV}` |
+--------+----------------------------------+-----------------------------------------------------------------------------------+---------------------------------------------+
| 13 | :math:`U^{\textrm{ATOM}}` | Atomization energy at 298.15K | :math:`\textrm{eV}` |
+--------+----------------------------------+-----------------------------------------------------------------------------------+---------------------------------------------+
| 14 | :math:`H^{\textrm{ATOM}}` | Atomization enthalpy at 298.15K | :math:`\textrm{eV}` |
+--------+----------------------------------+-----------------------------------------------------------------------------------+---------------------------------------------+
| 15 | :math:`G^{\textrm{ATOM}}` | Atomization free energy at 298.15K | :math:`\textrm{eV}` |
+--------+----------------------------------+-----------------------------------------------------------------------------------+---------------------------------------------+
| 16 | :math:`A` | Rotational constant | :math:`\textrm{GHz}` |
+--------+----------------------------------+-----------------------------------------------------------------------------------+---------------------------------------------+
| 17 | :math:`B` | Rotational constant | :math:`\textrm{GHz}` |
+--------+----------------------------------+-----------------------------------------------------------------------------------+---------------------------------------------+
| 18 | :math:`C` | Rotational constant | :math:`\textrm{GHz}` |
+--------+----------------------------------+-----------------------------------------------------------------------------------+---------------------------------------------+
Args:
root (string): Root directory where the dataset should be saved.
transform (callable, optional): A function/transform that takes in an
:obj:`torch_geometric.data.Data` object and returns a transformed
version. The data object will be transformed before every access.
(default: :obj:`None`)
pre_transform (callable, optional): A function/transform that takes in
an :obj:`torch_geometric.data.Data` object and returns a
transformed version. The data object will be transformed before
being saved to disk. (default: :obj:`None`)
pre_filter (callable, optional): A function that takes in an
:obj:`torch_geometric.data.Data` object and returns a boolean
value, indicating whether the data object should be included in the
final dataset. (default: :obj:`None`)
Stats:
.. list-table::
:widths: 10 10 10 10 10
:header-rows: 1
* - #graphs
- #nodes
- #edges
- #features
- #tasks
* - 130,831
- ~18.0
- ~37.3
- 11
- 19
""" # noqa: E501
raw_url = ('https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/'
'molnet_publish/qm9.zip')
raw_url2 = 'https://ndownloader.figshare.com/files/3195404'
processed_url = 'https://data.pyg.org/datasets/qm9_v3.zip'
def __init__(self, root: str, processed_name: str = 'processed', transform: Optional[Callable] = None,
pre_transform: Optional[Callable] = None,
pre_filter: Optional[Callable] = None):
self.processed_name = processed_name
super().__init__(root, transform, pre_transform, pre_filter)
self.data, self.slices = torch.load(self.processed_paths[0])
def mean(self, target: int) -> float:
y = torch.cat([self.get(i).y for i in range(len(self))], dim=0)
return float(y[:, target].mean())
def std(self, target: int) -> float:
y = torch.cat([self.get(i).y for i in range(len(self))], dim=0)
return float(y[:, target].std())
def atomref(self, target) -> Optional[torch.Tensor]:
if target in atomrefs:
out = torch.zeros(100)
out[torch.tensor([1, 6, 7, 8, 9])] = torch.tensor(atomrefs[target])
return out.view(-1, 1)
return None
@property
def raw_file_names(self) -> List[str]:
try:
import rdkit # noqa
return ['gdb9.sdf', 'gdb9.sdf.csv', 'uncharacterized.txt']
except ImportError:
return ['qm9_v3.pt']
@property
def processed_dir(self):
return os.path.join(self.root, self.processed_name)
@property
def processed_file_names(self) -> str:
return 'data_v3.pt'
def download(self):
try:
import rdkit # noqa
file_path = download_url(self.raw_url, self.raw_dir)
extract_zip(file_path, self.raw_dir)
os.unlink(file_path)
file_path = download_url(self.raw_url2, self.raw_dir)
os.rename(osp.join(self.raw_dir, '3195404'),
osp.join(self.raw_dir, 'uncharacterized.txt'))
except ImportError:
path = download_url(self.processed_url, self.raw_dir)
extract_zip(path, self.raw_dir)
os.unlink(path)
def process(self):
try:
import rdkit
from rdkit import Chem, RDLogger
from rdkit.Chem.rdchem import BondType as BT
from rdkit.Chem.rdchem import HybridizationType
RDLogger.DisableLog('rdApp.*')
except ImportError:
rdkit = None
if rdkit is None:
print(("Using a pre-processed version of the dataset. Please "
"install 'rdkit' to alternatively process the raw data."),
file=sys.stderr)
data_list = torch.load(self.raw_paths[0])
data_list = [Data(**data_dict) for data_dict in data_list]
if self.pre_filter is not None:
data_list = [d for d in data_list if self.pre_filter(d)]
if self.pre_transform is not None:
data_list = [self.pre_transform(d) for d in data_list]
torch.save(self.collate(data_list), self.processed_paths[0])
return
types = {'H': 0, 'C': 1, 'N': 2, 'O': 3, 'F': 4}
bonds = {BT.SINGLE: 0, BT.DOUBLE: 1, BT.TRIPLE: 2, BT.AROMATIC: 3}
with open(self.raw_paths[1], 'r') as f:
target = f.read().split('\n')[1:-1]
target = [[float(x) for x in line.split(',')[1:20]]
for line in target]
target = torch.tensor(target, dtype=torch.float)
target = torch.cat([target[:, 3:], target[:, :3]], dim=-1)
target = target * conversion.view(1, -1)
with open(self.raw_paths[2], 'r') as f:
skip = [int(x.split()[0]) - 1 for x in f.read().split('\n')[9:-2]]
suppl = Chem.SDMolSupplier(self.raw_paths[0], removeHs=False,
sanitize=False)
data_list = []
for i, mol in enumerate(tqdm(suppl)):
if i in skip:
continue
N = mol.GetNumAtoms()
conf = mol.GetConformer()
pos = conf.GetPositions()
pos = torch.tensor(pos, dtype=torch.float)
type_idx = []
atomic_number = []
aromatic = []
sp = []
sp2 = []
sp3 = []
num_hs = []
for atom in mol.GetAtoms():
type_idx.append(types[atom.GetSymbol()])
atomic_number.append(atom.GetAtomicNum())
aromatic.append(1 if atom.GetIsAromatic() else 0)
hybridization = atom.GetHybridization()
sp.append(1 if hybridization == HybridizationType.SP else 0)
sp2.append(1 if hybridization == HybridizationType.SP2 else 0)
sp3.append(1 if hybridization == HybridizationType.SP3 else 0)
z = torch.tensor(atomic_number, dtype=torch.long)
row, col, edge_type = [], [], []
for bond in mol.GetBonds():
start, end = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()
row += [start, end]
col += [end, start]
edge_type += 2 * [bonds[bond.GetBondType()]]
edge_index = torch.tensor([row, col], dtype=torch.long)
edge_type = torch.tensor(edge_type, dtype=torch.long)
edge_attr = F.one_hot(edge_type,
num_classes=len(bonds)).to(torch.float)
perm = (edge_index[0] * N + edge_index[1]).argsort()
edge_index = edge_index[:, perm]
edge_type = edge_type[perm]
edge_attr = edge_attr[perm]
row, col = edge_index
hs = (z == 1).to(torch.float)
num_hs = scatter(hs[row], col, dim_size=N).tolist()
x1 = F.one_hot(torch.tensor(type_idx), num_classes=len(types))
x2 = torch.tensor([atomic_number, aromatic, sp, sp2, sp3, num_hs],
dtype=torch.float).t().contiguous()
x = torch.cat([x1.to(torch.float), x2], dim=-1)
y = target[i].unsqueeze(0)
name = mol.GetProp('_Name')
# data = Data(x=x, z=z, pos=pos, edge_index=edge_index,
# edge_attr=edge_attr, y=y, name=name, idx=i)
data = Data(x=torch.tensor(type_idx), pos=pos, edge_index=edge_index, edge_attr=edge_attr, y=y, name=name)
if self.pre_filter is not None and not self.pre_filter(data):
continue
if self.pre_transform is not None:
data = self.pre_transform(data)
data_list.append(data)
torch.save(self.collate(data_list), self.processed_paths[0])
class TUDataset(InMemoryDataset):
r"""A variety of graph kernel benchmark datasets, *.e.g.* "IMDB-BINARY",
"REDDIT-BINARY" or "PROTEINS", collected from the `TU Dortmund University
<https://chrsmrrs.github.io/datasets>`_.
In addition, this dataset wrapper provides `cleaned dataset versions
<https://github.com/nd7141/graph_datasets>`_ as motivated by the
`"Understanding Isomorphism Bias in Graph Data Sets"
<https://arxiv.org/abs/1910.12091>`_ paper, containing only non-isomorphic
graphs.
.. note::
Some datasets may not come with any node labels.
You can then either make use of the argument :obj:`use_node_attr`
to load additional continuous node attributes (if present) or provide
synthetic node features using transforms such as
like :class:`torch_geometric.transforms.Constant` or
:class:`torch_geometric.transforms.OneHotDegree`.
Args:
root (string): Root directory where the dataset should be saved.
name (string): The `name
<https://chrsmrrs.github.io/datasets/docs/datasets/>`_ of the
dataset.
transform (callable, optional): A function/transform that takes in an
:obj:`torch_geometric.data.Data` object and returns a transformed
version. The data object will be transformed before every access.
(default: :obj:`None`)
pre_transform (callable, optional): A function/transform that takes in
an :obj:`torch_geometric.data.Data` object and returns a
transformed version. The data object will be transformed before
being saved to disk. (default: :obj:`None`)
pre_filter (callable, optional): A function that takes in an
:obj:`torch_geometric.data.Data` object and returns a boolean
value, indicating whether the data object should be included in the
final dataset. (default: :obj:`None`)
use_node_attr (bool, optional): If :obj:`True`, the dataset will
contain additional continuous node attributes (if present).
(default: :obj:`False`)
use_edge_attr (bool, optional): If :obj:`True`, the dataset will
contain additional continuous edge attributes (if present).
(default: :obj:`False`)
cleaned (bool, optional): If :obj:`True`, the dataset will
contain only non-isomorphic graphs. (default: :obj:`False`)
Stats:
.. list-table::
:widths: 20 10 10 10 10 10
:header-rows: 1
* - Name
- #graphs
- #nodes
- #edges
- #features
- #classes
* - MUTAG
- 188
- ~17.9
- ~39.6
- 7
- 2
* - ENZYMES
- 600
- ~32.6
- ~124.3
- 3
- 6
* - PROTEINS
- 1,113
- ~39.1
- ~145.6
- 3
- 2
* - COLLAB
- 5,000
- ~74.5
- ~4914.4
- 0
- 3
* - IMDB-BINARY
- 1,000
- ~19.8
- ~193.1
- 0
- 2
* - REDDIT-BINARY
- 2,000
- ~429.6
- ~995.5
- 0
- 2
* - ...
-
-
-
-
-
"""
url = 'https://www.chrsmrrs.com/graphkerneldatasets'
cleaned_url = ('https://raw.githubusercontent.com/nd7141/'
'graph_datasets/master/datasets')
def __init__(self, root: str, name: str, processed_name:str,
transform: Optional[Callable] = None,
pre_transform: Optional[Callable] = None,
pre_filter: Optional[Callable] = None,
use_node_attr: bool = False, use_edge_attr: bool = False,
cleaned: bool = False):
self.name = name
self.cleaned = cleaned
self.processed_name = processed_name
super().__init__(root, transform, pre_transform, pre_filter)
out = torch.load(self.processed_paths[0])