diff --git a/README.md b/README.md index fb3489a98..77222cc10 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,5 @@ # Grid2Op + [![Downloads](https://pepy.tech/badge/grid2op)](https://pepy.tech/project/grid2op) [![PyPi_Version](https://img.shields.io/pypi/v/grid2op.svg)](https://pypi.org/project/Grid2Op/) [![PyPi_Compat](https://img.shields.io/pypi/pyversions/grid2op.svg)](https://pypi.org/project/Grid2Op/) @@ -10,57 +11,65 @@ Grid2Op is a platform, built with modularity in mind, that allows to perform powergrid operation. And that's what it stands for: Grid To Operate. -Grid2Op acts as a replacement of [pypownet](https://github.com/MarvinLer/pypownet) -as a library used for the Learning To Run Power Network [L2RPN](https://l2rpn.chalearn.org/). +Grid2Op acts as a replacement of [pypownet](https://github.com/MarvinLer/pypownet) +as a library used for the Learning To Run Power Network [L2RPN](https://l2rpn.chalearn.org/). This framework allows to perform most kind of powergrid operations, from modifying the setpoint of generators, to load shedding, performing maintenance operations or modifying the *topology* of a powergrid to solve security issues. -Official documentation: the official documentation is available at +Official documentation: the official documentation is available at [https://grid2op.readthedocs.io/](https://grid2op.readthedocs.io/). -* [1 Installation](#installation) - * [1.1 Setup a Virtualenv (optional)](#setup-a-virtualenv-optional) - * [1.2 Install from source](#install-from-source) - * [1.3 Install from PyPI](#install-from-pypi) - * [1.4 Install for contributors](#install-for-contributors) - * [1.5 Docker](#docker) -* [2 Main features of Grid2Op](#main-features-of-grid2op) -* [3 Getting Started](#getting-started) - * [0 Basic features](getting_started/0_basic_functionalities.ipynb) - * [1 BaseObservation Agents](getting_started/1_Observation_Agents.ipynb) - * [2 BaseAction Grid Manipulation](getting_started/2_Action_GridManipulation.ipynb) - * [3 Training An BaseAgent](getting_started/3_TrainingAnAgent.ipynb) - * [4 Study Your BaseAgent](getting_started/4_StudyYourAgent.ipynb) -* [4 Citing](#Citing) -* [5 Documentation](#documentation) -* [6 Contribute](#contributing) -* [7 Test and known issues](#tests-and-known-issues) -* [8 License information](#license-information) - -# Installation -## Requirements: -* Python >= 3.6 - -## Setup a Virtualenv (optional) -### Create a virtual environment +* [1 Installation](#installation) + * [1.1 Setup a Virtualenv (optional)](#setup-a-virtualenv-optional) + * [1.2 Install from source](#install-from-source) + * [1.3 Install from PyPI](#install-from-pypi) + * [1.4 Install for contributors](#install-for-contributors) + * [1.5 Docker](#docker) +* [2 Main features of Grid2Op](#main-features-of-grid2op) +* [3 Getting Started](#getting-started) + * [0 Basic features](getting_started/0_basic_functionalities.ipynb) + * [1 BaseObservation Agents](getting_started/1_Observation_Agents.ipynb) + * [2 BaseAction Grid Manipulation](getting_started/2_Action_GridManipulation.ipynb) + * [3 Training An BaseAgent](getting_started/3_TrainingAnAgent.ipynb) + * [4 Study Your BaseAgent](getting_started/4_StudyYourAgent.ipynb) +* [4 Citing](#citing) +* [5 Documentation](#documentation) +* [6 Contribute](#contributing) +* [7 Test and known issues](#tests-and-known-issues) +* [8 License information](#license-information) + +## Installation + +### Requirements + +* Python >= 3.6 + +### Setup a Virtualenv (optional) + +#### Create a virtual environment + ```commandline cd my-project-folder pip3 install -U virtualenv python3 -m virtualenv venv_grid2op ``` -### Enter virtual environment + +#### Enter virtual environment + ```commandline source venv_grid2op/bin/activate ``` -## Install from PyPI +### Install from PyPI + ```commandline pip3 install grid2op ``` -## Install from source +### Install from source + ```commandline git clone https://github.com/rte-france/Grid2Op.git cd Grid2Op @@ -68,7 +77,8 @@ pip3 install -U . cd .. ``` -## Install for contributors +### Install for contributors + ```commandline git clone https://github.com/rte-france/Grid2Op.git cd Grid2Op @@ -77,25 +87,30 @@ pip3 install -e .[optional] pip3 install -e .[docs] ``` -## Docker +### Docker + Grid2Op docker containers are available on [dockerhub](https://hub.docker.com/r/bdonnot/grid2op/tags). To install the latest Grid2Op container locally, use the following: + ```commandline docker pull bdonnot/grid2op:latest ``` -# Main features of Grid2Op -## Core functionalities +## Main features of Grid2Op + +### Core functionalities + Built with modulartiy in mind, Grid2Op is a library used for the "Learning To Run Power Network" [L2RPN](https://l2rpn.chalearn.org/) competitions series. It can also Its main features are: + * emulates the behavior of a powergrid of any size at any format (provided that a *backend* is properly implemented) -* allows for grid modifications (active and reactive load values, generator voltages setpoints, active production but most +* allows for grid modifications (active and reactive load values, generator voltages setpoints, active production but most importantly grid topology beyond powerline connection / disconnection) * allows for maintenance operations and powergrid topological changes -* can adopt any powergrid modeling, especially Alternating Current (AC) and Direct Current (DC) approximation to +* can adopt any powergrid modeling, especially Alternating Current (AC) and Direct Current (DC) approximation to when performing the compitations * supports changes of powerflow solvers, actions, observations to better suit any need in performing power system operations modeling * has an RL-focused interface, compatible with [OpenAI-gym](https://gym.openai.com/): same interface for the @@ -103,46 +118,48 @@ Its main features are: * parameters, game rules or type of actions are perfectly parametrizable * can adapt to any kind of input data, in various format (might require the rewriting of a class) -## Powerflow solver +### Powerflow solver + Grid2Op relies on an open source powerflow solver ([PandaPower](https://www.pandapower.org/)), -but is also compatible with other *Backend*. If you have at your disposal another powerflow solver, +but is also compatible with other *Backend*. If you have at your disposal another powerflow solver, the documentation of [grid2op/Backend](grid2op/Backend/Backend.py) can help you integrate it into a proper "Backend" and have Grid2Op using this powerflow instead of PandaPower. -# Getting Started -Some Jupyter notebook are provided as tutorials for the Grid2Op package. They are located in the -[getting_started](getting_started) directories. +## Getting Started + +Some Jupyter notebook are provided as tutorials for the Grid2Op package. They are located in the +[getting_started](getting_started) directories. TODO: this needs to be redone, refactorize and better explained for some of them. These notebooks will help you in understanding how this framework is used and cover the most interesting part of this framework: -* [00_Introduction](getting_started/00_Introduction.ipynb) +* [00_Introduction](getting_started/00_Introduction.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/rte-france/Grid2Op/blob/master/getting_started/00_Introduction.ipynb) - and [00_SmallExample](getting_started/00_SmallExample.ipynb) + and [00_SmallExample](getting_started/00_SmallExample.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/rte-france/Grid2Op/blob/master/getting_started/00_SmallExample.ipynb) - describe what is - adressed by the grid2op framework (with a tiny introductions to both power systems and reinforcement learning) + describe what is + adressed by the grid2op framework (with a tiny introductions to both power systems and reinforcement learning) and give and introductory example to a small powergrid manipulation. * [01_Grid2opFramework](getting_started/01_Grid2opFramework.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/rte-france/Grid2Op/blob/master/getting_started/01_Grid2opFramework.ipynb) - covers the basics + covers the basics of the - Grid2Op framework. It also covers how to create a valid environment and how to use the + Grid2Op framework. It also covers how to create a valid environment and how to use the `Runner` class to assess how well an agent is performing rapidly. * [02_Observation](getting_started/02_Observation.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/rte-france/Grid2Op/blob/master/getting_started/02_Observation.ipynb) - details how to create - an "expert agent" that will take pre defined actions based on the observation it gets from + details how to create + an "expert agent" that will take pre defined actions based on the observation it gets from the environment. This Notebook also covers the functioning of the BaseObservation class. * [03_Action](getting_started/03_Action.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/rte-france/Grid2Op/blob/master/getting_started/03_Action.ipynb) - demonstrates + demonstrates how to use the BaseAction class and how to manipulate the powergrid. * [04_TrainingAnAgent](getting_started/04_TrainingAnAgent.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/rte-france/Grid2Op/blob/master/getting_started/04_TrainingAnAgent.ipynb) - shows how to get started with + shows how to get started with reinforcement learning with the grid2op environment. It shows the basic on how to train a "PPO" model operating the grid relying on "stable baselines 3" PPO implementation. * [05_StudyYourAgent](getting_started/05_StudyYourAgent.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/rte-france/Grid2Op/blob/master/getting_started/05_StudyYourAgent.ipynb) @@ -152,48 +169,49 @@ interesting part of this framework: come soon. * [06_Redispatching_Curtailment](getting_started/06_Redispatching_Curtailment.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/rte-france/Grid2Op/blob/master/getting_started/06_Redispatching_Curtailment.ipynb) - explains what is the - "redispatching" and curtailment from the point - of view of a company who's in charge of keeping the powergrid safe (aka a Transmission System Operator) and how to - manipulate this concept in grid2op. Redispatching (and curtailment) allows you to perform **continuous** - actions on the powergrid + explains what is the + "redispatching" and curtailment from the point + of view of a company who's in charge of keeping the powergrid safe (aka a Transmission System Operator) and how to + manipulate this concept in grid2op. Redispatching (and curtailment) allows you to perform **continuous** + actions on the powergrid problem. * [07_MultiEnv](getting_started/07_MultiEnv.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/rte-france/Grid2Op/blob/master/getting_started/07_MultiEnv.ipynb) details how grid2op natively support a single agent interacting - with multiple environments at the same time. This is particularly handy to train "asynchronous" agent in the + with multiple environments at the same time. This is particularly handy to train "asynchronous" agent in the Reinforcement Learning community for example. * [08_PlottingCapabilities](getting_started/08_PlottingCapabilities.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/rte-france/Grid2Op/blob/master/getting_started/08_PlottingCapabilities.ipynb) - shows you the different ways with which you - can represent (visually) the grid your agent interact with. A renderer is available like in many open AI gym + shows you the different ways with which you + can represent (visually) the grid your agent interact with. A renderer is available like in many open AI gym environment. But you also have the possibility to post process an agent and make some movies out of it, and we also developed a Graphical User Interface (GUI) called "[grid2viz](https://github.com/mjothy/grid2viz)" that allows - to perform in depth study of your agent's behaviour on different scenarios and even to compare it with baselines. + to perform in depth study of your agent's behaviour on different scenarios and even to compare it with baselines. * [09_EnvironmentModifications](getting_started/09_EnvironmentModifications.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/rte-france/Grid2Op/blob/master/getting_started/09_EnvironmentModifications.ipynb) - elaborates on the maintenance, + elaborates on the maintenance, hazards and attacks. All three of these represents external events that can disconnect some powerlines. This notebook covers how to spot when such things happened and what can be done when the maintenance or the attack is over. * [10_StorageUnits](getting_started/10_StorageUnits.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/rte-france/Grid2Op/blob/master/getting_started/10_StorageUnits.ipynb) details the usage and behaviour of the storage units - in grid2op. + in grid2op. * [11_IntegrationWithExistingRLFrameworks](getting_started/11_IntegrationWithExistingRLFrameworks.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/rte-france/Grid2Op/blob/master/getting_started/11_IntegrationWithExistingRLFrameworks.ipynb) explains how to use grid2op with other reinforcement learning framework. TODO: this needs to be redone - -Try them out in your own browser without installing -anything with the help of mybinder: + +Try them out in your own browser without installing +anything with the help of mybinder: [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/rte-france/Grid2Op/master) Or thanks to google colab (all links are provided near the notebook description) -# Citing +## Citing If you use this package in one of your work, please cite: -``` + +```text @misc{grid2op, author = {B. Donnot}, title = {{Grid2op- A testbed platform to model sequential decision making in power systems. }}, @@ -204,34 +222,37 @@ If you use this package in one of your work, please cite: } ``` -# Documentation +## Documentation -The official documentation is available at +The official documentation is available at [https://grid2op.readthedocs.io/](https://grid2op.readthedocs.io/). -## Build the documentation locally +### Build the documentation locally A copy of the documentation can be built if the project is installed *from source*: you will need Sphinx, a Documentation building tool, and a nice-looking custom [Sphinx theme similar to the one of readthedocs.io](https://sphinx-rtd-theme.readthedocs.io/en/latest/). These can be installed with: + ```commandline pip3 install -U grid2op[docs] ``` -This installs both the Sphinx package and the custom template. + +This installs both the Sphinx package and the custom template. Then, on systems where `make` is available (mainly gnu-linux and macos) the documentation can be built with the command: + ```commandline make html ``` For windows, or systems where `make` is not available, the command: + ```commandline sphinx-build -b html docs documentation ``` - -This will create a "documentation" subdirectory and the main entry point of the document will be located at +This will create a "documentation" subdirectory and the main entry point of the document will be located at [index.html](documentation/html/index.html). It is recommended to build this documentation locally, for convenience. @@ -239,17 +260,17 @@ For example, the "getting started" notebooks referenced some pages of the help. -# Contributing +## Contributing -We welcome contributions from everyone. They can take the form of pull requests for smaller changed. -In case of a major change (or if you have a doubt on what is "a small change"), please open an issue first +We welcome contributions from everyone. They can take the form of pull requests for smaller changed. +In case of a major change (or if you have a doubt on what is "a small change"), please open an issue first to discuss what you would like to change. To contribute to this code, you need to: -1. fork the repository located at https://github.com/rte-france/Grid2Op +1. fork the repository located at 2. synch your fork with the "latest developement branch of grid2op". For example, if the latest grid2op release - on pypi is `1.6.5` you need to synch your repo with the branch named `dev_1.6.6` or `dev_1.7.0` (if + on pypi is `1.6.5` you need to synch your repo with the branch named `dev_1.6.6` or `dev_1.7.0` (if the branch `dev_1.6.6` does not exist). It will be the highest number in the branches `dev_*` on grid2op official github repository. 3. implement your functionality / code your modifications or anything else @@ -258,55 +279,59 @@ To contribute to this code, you need to: make sure to solve any possible conflicts 6. write a pull request and make sure to target the right branch (the "last development branch") - Code in the contribution should pass all the tests, have some dedicated tests for the new feature (if applicable) and documentation (if applicable). Before implementing any major feature, please write a github issue first. -# Tests and known issues +## Tests and known issues + +### Tests performed currently -## Tests performed currently Grid2op is currently tested on windows, linux and macos. The unit tests includes testing, on linux machines the correct integration of grid2op with: -- python 3.8 -- python 3.9 -- python 3.10 -- python 3.11 +* python 3.8 +* python 3.9 +* python 3.10 +* python 3.11 On all of these cases, we tested grid2op on all available numpy version >= 1.20 (**nb** available numpy versions depend on python version). The complete test suit is run on linux with the latest numpy version on python 3.8. -## Known issues +### Known issues Due to the underlying behaviour of the "multiprocessing" package on windows based python versions, -the "multiprocessing" of the grid2op "Runner" is not supported on windows. This might change in the future, +the "multiprocessing" of the grid2op "Runner" is not supported on windows. This might change in the future, but it is currently not on our priorities. A quick fix that is known to work include to set the `experimental_read_from_local_dir` when creating the environment with `grid2op.make(..., experimental_read_from_local_dir=True)` (see doc for more information) -## Perform tests locally +### Perform tests locally + Provided that Grid2Op is installed *from source*: -### Install additional dependencies +#### Install additional dependencies + ```commandline pip3 install -U grid2op[optional] ``` -### Launch tests + +#### Launch tests + ```commandline cd grid2op/tests python3 -m unittest discover ``` -# License information -Copyright 2019-2020 RTE France +## License information - RTE: http://www.rte-france.com +Copyright 2019-2020 RTE France +RTE: -This Source Code is subject to the terms of the Mozilla Public License (MPL) v2 also available +This Source Code is subject to the terms of the Mozilla Public License (MPL) v2 also available [here](https://www.mozilla.org/en-US/MPL/2.0/)